
This is an author-created version of the following work: Rieke, R. (2004). Tool based formal
Modelling, Analysis and Visualisation of Enterprise Network Vulnerabilities utilising Attack
Graph Exploration. In U.E. Gattiker (Ed.), EICAR 2004 Conference CD-rom: Best Paper
Proceedings (ISBN: 87-987271-6-8) 31 pages. Copenhagen: EICAR e.V., c© 2004 EICAR e.V.

Tool based formal Modelling, Analysis and Visualisation of
Enterprise Network Vulnerabilities utilising Attack Graph
Exploration

Roland Rieke
Fraunhofer - Institute Secure Telecooperation, Germany

Mailing Address: Fraunhofer - Institut Sichere Telekooperation, Rheinstrasse
75, D-64295 Darmstadt, Germany ; E-Mail: roland.rieke@sit.fraunhofer.de

Descriptors
critical infrastructure protection, attack simulation, verification tool, security
properties, survivability analysis, cost-benefit analysis, intrusion detection, coun-
termeasure evaluation, critical services, risk assessment

. .

Tool based formal Modelling, Analysis and Visualisation of Enterprise
Network Vulnerabilities utilising Attack Graph Exploration

Abstract
A core concern of critical infrastructure protection is a careful analysis of what
parts of the information infrastructure really need protection and what are the
concrete threads as well as an evaluation of appropriate protection measures.

In this paper a methodology and a tool for the development and analysis
of operational formal models is presented that addresses these issues in the
context of network vulnerability analysis.

A graph of all possible attack paths is automatically computed from the
model of a government or enterprise network, of vulnerabilities, exploits and
an attacker strategy.

Based on this graph, security properties are specified and verified, abstrac-
tions of the graph are computed to visualise and analyse compacted informa-
tion focussed on interesting aspects of the behaviour and cost-benefit analysis
is performed.

Survivability comes into play, when system´s countermeasures and the be-
haviour of vital services it provides are also modelled and effects are analysed.

Introduction

Todays public, government and enterprise networks are facing a cumulation
of risks because a multitude of more or less critical vulnerabilities to system
security are found every month. At the same time, the published malicious
incidents increase in scope and severity. On the other hand, technological
advancements in anti-virus software, firewalls and intrusion detection systems
provide a broad palette of proactive defence measures for network protection
and impact reduction. The increasing complexity of the network structures and
possible protection strategies on one hand and the attack possibilities on the
other hand require tool based methods, to guide a systematic evaluation and
assist the persons in charge with finally determining exactly what really needs
protection and which strategy and means to apply.

A typical means by which an attacker tries to break into a network is, to
use combinations of basic exploits to get more information or more credentials
and to capture more hosts step by step. To find out if there is a combination
that enables an attacker to reach critical network resources or block essential
services it is required, to analyse all possible sequences of basic exploits so
called attack paths. It is also important, to find out which protection could block
successful attack paths most efficiently or at least detect attack attempts in an
early phase.

2

. .

For this type of vulnerability analysis, an operational formal model is pre-
sented that represents the information system and the behaviour of an at-
tacker. In more detail, it comprises a model of the enterprise network structure
and configuration including intrusion detection components, a model of vulner-
abilities and corresponding basic exploits, a model of attacker capabilities and
profile, and optionally a model of the system’s countermeasures.

Based on that model, a reachability graph representing the complete sys-
tem behaviour is automatically computed. Because this graph in the presented
application scenario represents all possible attack paths, it is called attack
graph in the following text. Now security properties can be specified and veri-
fied on the computed behaviour of the model.

The applied verification method is based on formal methods and is imple-
mented in the SH verification tool (Ochsenschläger et al., 1999, 2000a) that
has been adapted and extended to support the presented attack graph analy-
sis methods.

Questions relating to security properties that can be answered by analysing
the attack graph include the following:

Q 1 What security goals can be broken by a combination of a set of basic
exploits selected as attacker profile ?

Q 2 Find the biggest sources of trouble in the system based on vulnerability-
priorities network-structure and possible attack-patterns. Is there a criti-
cal host or vulnerability on all paths to some attacker goal ?

Q 3 Quick check of “am I affected” by a newly found vulnerability and what
new attack-combinations/patterns are possible when adding this vulner-
ability ?

Q 4 What are the effects of changes to the network configuration on overall
vulnerability ?

If the model additionally includes specifications of intrusion detection com-
ponents, then their behaviour and required coaction to recognise attacks, even
when evidence is scattered over several hosts, can be analysed.

Common questions concerning intrusion detection are:

Q 5 What attacks are detected ?

Q 6 What are the effects of changes to intrusion detection systems on overall
detection of attacks ?

Abstractions of the attack graph can be computed to visualise and analyse
compacted information focussed on interesting aspects of the behaviour. The

3

. .

mappings used to compute the abstracted behaviour have to be property pre-
serving, to assure that properties are transported as desired from a lower to a
higher level of abstraction and no critical behaviour is hidden by the mapping.

Aspects that can be visualised using appropriate abstractions on the attack
graph are for example:

Q 7 How does the attack graph look like when only attacks that give the at-
tacker new root access are shown (focussing on gain of credentials) ?

Cost-benefit analysis can be performed based on costs assigned to the
atomic exploits representing level of effort for the attacker and benefits regard-
ing relative importance of the captured hosts. Typical questions concerning
cost-benefit are:

Q 8 What is the attack with the least costs breaking a given security prop-
erty ?

Q 9 How much impact can an attacker produce given that he applies a given
set of atomic exploits ?

Q 10 What is the optimal position of given intrusion detection systems regard-
ing cost benefit balance ?

Liveness (in this context often called survivability) comes into play, if part
of the behaviour of the enterprise network is also modelled. Analysing effects
of countermeasures the system performs under attack or the behaviour of vital
services it provides is possible. Careful modelling on an adequate abstraction
level is required here to avoid typical state space explosion problems.
A typical liveness questions is:

Q 11 Is a client still able to get answers from a DB-server when the enterprise
network is under attack ?

Some remarks on the remainder of this paper:
The first step in critical infrastructure protection is, to identify the organi-

sation’s critical infrastructures and to determine the threats against those in-
frastructures. This process is described in the next section particularly with
regard to network vulnerability analysis. For this purpose, the components to
be specified for modelling an attack scenario are described in detail.

The next step in critical infrastructure protection is, to analyse the vulner-
abilities of the threatened infrastructure, to assess the risks of degradation or
loss of a critical resources as well as to evaluate the effects of the application
of countermeasures where risk is unacceptable. To support that process in
the given context, in the subsequent section a methodology for the analysis of
an attack graph is presented that helps to reveal complex attack combinations

4

. .

and supports the systematic evaluation of possible solutions to minimise risk
with given resources.

In the last section an example scenario is presented and the dynamic be-
haviour of different variants is analysed. Finally some related work is com-
mented, conclusions from this work are drawn and further research goals are
sketched.

Modelling an attack scenario

In this section the information model used and the formal analysis and ver-
ification methods and the tool are described, the required specifications are
explained in detail and the computation of the attack graph is outlined. Fig-
ure 1 shows an overview of the components used to specify the model of the
enterprise network system under attack.

- service implementation
 denial of service attacks, ...
 shut down other services,
 send wrong or misleading information,
- shut down intrusion detection,
 change configuration, reduce impact
 actively prevent intrusion,
- strategy, tools, components to

critical services
impact simulation,
system defence,

- ports reachable through firewall
- connections between hosts

network structure

- position of IDS
 types and properties
- intrusion detection system

intrusion detection

- worth of host for cost-benefit analysis
 if he captures the host
- information an attacker gains
- trust relation to other hosts
- services provided
- products installed (-> vulnerabilities)

(representative) hosts

- ranking of exploits and hosts
- credentials (access rights)
- known exploits and hosts

- knowledge, strategy -
 attacker

 (for cost-benefit analysis)
- cost of exploit
- based on vulnerabilities

exploits

- impact
 (vulnerable products,...)
- preconditions
- unique identifier

vulnerabilities

 specification concept
- flexible operational
 automata (APA)
- asynchronous product

- components and behaviour -
formal specification of system

state transitions
optional

state transitions
possible

state transitions
restrictions to

state transitions
monitoring of

of state transitions
restrictions to applicability

Figure 1. Components of the model

Information model

To model the enterprise network, the vulnerabilities and the intrusion detection
systems, a data model loosely resembling the M2D2 information model (Morin
et al., 2002) is used. M2D2 is a formally defined model for information related
to the characteristics of the monitored information system, information about
the vulnerabilities, information about the security tools used for the monitoring,

5

. .

and information about the events observed. Appropriate parts of this model
are adopted and supplemented by concepts needed for description of exploits,
attacker knowledge and strategy and information for cost benefit analysis.

Modelling hosts and network topology
The set of all hosts of the information system consists of the union of the hosts
of the enterprise network and the hosts of the attacker(s).

A somewhat abstracted view is used for the representation of network topol-
ogy including firewalls in the information model. A relation stating what port on
what host is reachable from one another is used as network model. The model
is very flexible, so that this implicit representation may be changed to a more
explicit representation of firewalls easily if this turns out to be useful.

Modelling products, vulnerabilities and host configurations
Following the M2D2 model products are the primary entities that are vulnera-
ble. A host configuration is a subset of products that is installed on that host
and affects is a relation between vulnerabilities and sets of products that are
affected by a vulnerability. A host is vulnerable if its configuration is a superset
of a vulnerable set of products. Additionally to the installed products a host
configuration contains information about what services are currently running
and on what ports they are listening.

The vulnerabilities are represented in form of specifications representing
a (sub)set of common vulnerabilities and exposures CVE/CAN that MITRE
(see http://cve.mitre.org/) provides to support standardisation of names for all
publicly known vulnerabilities and security exposures. These specifications
additionally include preconditions about the target host as well as network pre-
conditions and describe effects that the vulnerabilities have on the attacker and
possibly on the network and target host.

Representative hosts
When analysing a complex enterprise network one usually faces a state space
explosion problem because all possible combinations of exploits on all possi-
ble hosts have to be explored. Therefore it is advantageous to subsume all
groups of hosts that have the same configuration, run the same products and
are reachable with the same restrictions and that exhibit the same behaviour
to one representative host for each such group. In the following text the term
host will be used as a synonym referring to this representative host. What is
suggested here, is to have an abstraction layer between the real enterprise
network and the network of representative hosts that still contains all relevant
attacks but reduces equivalent combinations. This abstraction could also be
applied later after analysing the complete behaviour of the system by using

6

. .

an appropriate mapping but analysis takes much longer then because all se-
quences of possible combinations have to be computed.

Summarising representative hosts
An extension of the above sketched strategy (if the network is still too big for
analysis) is to summarise hosts that are reachable with the same restrictions
and add up their vulnerabilities to create a representative host with merged
vulnerabilities of all summarised hosts. In this case some attacks may be found
that are not possible in the real network and the decision if this approximation of
system behaviour is good enough for analysis is up to the modeller. A strategy
could be, to start with only one representative host per operating system that
is configured to have installed all vulnerable products that the enterprise uses
(for that operating system) and after that analysis go to a finer granularity as
long as the computed state space is still manageable.

Automated generation of formal specifications ?
Note that it would be desirable to have an automated generation of formal
specifications of system configuration directly derived from the output that net-
work scanner tools like Nessus (see http://www.nessus.org/) provide.

Furthermore vulnerability specifications could be derived from vulnerabil-
ity database information that for instance ICAT (see http://icat.nist.gov/) pro-
vides. First step would be to find a good structure and means for a for-
mal description of vulnerabilities that can be used to collect a database of
all known vulnerabilities. An agreed upon formal (and tool readable) descrip-
tion of intruder/host/service/network-preconditions and effects of exploitation
would have to be developed. An international project like the CAMDIER pro-
posal (Gattiker et al., 2003) might tackle such a task.

Operational specification of the behaviour

The modelling of the behaviour of the given information model is based on
asynchronous product automata (APA), a flexible operational specification con-
cept for cooperating systems (Gürgens et al., 2002a). An APA consists of a
family of so called elementary automata communicating by common compo-
nents of their state (shared memory). APA are formally defined in figure 2.

7

. .

Formally an Asynchronous Product Automaton consists of a family of State Sets
ZS, S ∈ S, a family of Elementary Automata (Φe, ∆e), e ∈ E and a Neighbourhood
Relation N : E→ P(S); P(X) is the power set of X and S and E are index sets with
the names of state components and elementary automata. For each Elementary
Automaton (Φe, ∆e) with Alphabet Φe, ∆e ⊆ ��S∈N(e)(ZS) ×Φe × ��S∈N(e)(ZS) is
its State Transition Relation. For each element of Φe the state transition relation
∆e defines state transitions that change only the state components in N(e). An
APA’s (global) States are elements of ��S∈S(ZS). To avoid pathological cases it
is generally assumed that S =

⋃
e∈E(N(e)) and N(e) 6= ∅ for all e ∈ E. Each APA

has one Initial State s0 = (q0S)S∈S ∈ ��S∈S(ZS). In total, an APA A is defined by
A = ((ZS)S∈S, (Φe, ∆e)e∈E, N, s0).
The behaviour of an APA is represented by all possible sequences
of state transitions starting with initial state s0. The sequence
(s0, (e1, a1), s1)(s1, (e2, a2), s2)(s2, (e3, a3), s3) . . . with ai ∈ Φei represents
one possible sequence of actions of an APA.
State transitions (s, (e, a), s̄) may be interpreted as labeled edges of a directed
graph whose nodes are the states of an APA: (s, (e, a), s̄) is the edge leading
from s to s̄ and labeled by (e, a). The subgraph reachable from the node s0 is
called the reachability graph of an APA.

Figure 2. APA definition

APA state components representing the information model
The information model described above is specified for the proposed analysis
method using the following APA state components:

S 1 a specification of the enterprise network topology and host configurations

• reachability of ports on all hosts

• trust relations between hosts

• knowledge available at each host that might be valuable for an at-
tacker as for example ip-numbers of other reachable hosts

• services running on each host

• installed products on each host

S 2 a specification of vulnerabilities of products
⇒ leads to a specification of vulnerabilities for each host S 2’ when
combined with products installed on each host specified above

8

. .

S 3 a specification of attacker knowledge and strategy

S 4 a specification of installed intrusion detection components

S 5 cost benefit ratings, when evaluation about relative values is intended

These specifications are represented in the data structures and initial con-
figuration of the state components in the APA model (see figures 3 and 4).

Modelling attacker and system behaviour
APA state transitions are used to represent atomic exploits and optionally ac-
tions the enterprise network system can take to defend itself or to implement
vital services (see figures 3 and 4).

- service action
- system defence operation,
- basic exploit,
- preprocessing,

State transition

next configuration
Information model APA state components’

APA state transition

APA state components
(initial) configuration
Information model

represented by

repesented by

Figure 3. Representation of the information model using APA

State transition pattern notation for APA
For the definition of the state transition relation of an elementary automaton
e ∈ E, one has to specify all states of components C ∈ N(e) (state components
belonging to e) where e is active, i.e. can perform a state transition, and the
changes of the states caused by the state transition. APA transition pattern
notation is formally defined in (Gürgens et al., 2002b).

A specification of a state transition pattern consists of the name of the
transition pattern, a role identifier, some predicates for the conditions to be
checked and some expressions to describe the changes in the neighbour state
components.

A state transition can occur when all expressions are evaluable and all con-
ditions are satisfied. All possible variants of bindings of variables to elements
of the state components are generated automatically, so if for example a com-
ponent contains different hosts and a variable is used to represent a chosen

9

. .

source host and another variable is used for an arbitrary target host of an ex-
ploit then all possible combinations of source and target host are computed
and further evaluated.

APA state transition patterns specify attacker and system behaviour
This paper is primarily concerned with using state transition patterns to model
attacker behaviour but as a possible extension other types of state transition
patterns are also considered that can be used to model the behaviour of en-
terprise network components. To reflect the different purposes of the state
transitions three different types are distinguished here. They are characterised
by the role that is associated with the transition type. An instance of a transi-
tion furthermore has a name to identify it; this can be for example the name of
the exploit it specifies.

T Attacker Exploit specifications of atomic exploits based on the given vul-
nerabilities model the actions an attacker can take in arbitrary order; note
that more than one attacker can act in that role

T Defence Operation specify a model for system defence strategy, tools and
components (optional)

T Service Action a model of critical services the system provides (optional)

For a state transition pattern T Attacker Exploit modelling an exploit, a
template structure was developed, so that additional exploits can easily be
added following that layout. This template can serve as a basis to develop an
automatic mechanism that generates such patterns from a knowledge base
containing specifications of the known exploits.

In contrast to the generic nature of T Attacker Exploit , the state transi-

tion patterns T Defence Operation and T Service Action are individual for
the modelled enterprise network, therefore no specific structure is assumed
here. They reflect the state changes triggered by the respective operations.

Structure of state transition patterns for atomic exploits
Figure 4 shows a graphical representation of the template for T Attacker Exploit
including the neighbourhood relation (depicted by the edges) to the state com-
ponents S1 - S5 (depicted by the circles) listed in the information model
above.

10

. .

one state component for each attacker

S3

IDS_Configuration IDS_Alert_Log

Host_Vulnerabilities

Attacker_known_Exploits
Attacker_Knowledge

Host_Services

User_Cooperation_Log

Host_Knowledge

Attacker_Credentials

Host_Reachability

Cost_Benefit_Ratings

Trust_Relations

S1

Exploit

E7: impact on network and host
E6: assignment of cost benefit ratings
E5: intrusion detection check
E4: transfer of knowledge from target host to attacker
E3 check if the target host is currently vulnerable
E2: selection of source and target hosts
E1: check that the attacker knows this exploit

S4 S5

S2’

 of attack graph)
(postprocessing

Accumulated_Cost_Benefit

Role: Attacker

Figure 4. Transition pattern template for exploit modelling

According to this template, a state transition pattern modelling an exploit is
constructed from the role identifier, here Attacker the name of the transition
pattern which is identical to the name of the exploit and a body that comprises
the following expressions:

E 1 a check that the attacker knows this exploit;
this is determined by an initial configuration that can be given directly or
computed from a given set of exploits

E 2 a selection of source and target hosts for the exploit

• the source host is chosen from the host set the attacker already has
adequate access to (in some cases the target also needs access to
the source host for example to read a Trojan web page)

• the target host is chosen so that if the exploit succeeds the attacker
will win some credentials or additional knowledge
⇒ induces monotone growing attacker knowledge (no cycles in at-
tack graph), therefore reduces complexity (see also (Ammann et al.,
2002))

11

. .

E 3 a check if the target host is vulnerable as stated in the specification of the
vulnerabilities needed by this exploit (possibly multiple different exploits
can be based on the same vulnerability)

E 4 the transfer of knowledge from target host to attacker;
it has to be decided how to cope with changing knowledge of the cap-
tured host; is knowledge transferred once the host is captured or is a
link from attacker to host knowledge inserted, so that the attacker always
gets the updated contents ? Is attacker knowledge ever invalidated or is
knowledge only valid for a time interval ? These questions influence the
attack graph and may lead to cycles.

E 5 an intrusion detection check for that exploit

E 6 an assignment of cost benefit ratings to this exploit

E 7 an expression to implement the additional impact on the network and
host ; for example, to shut down or manipulate a host based intrusion
detection system

The vulnerabilities checked in step E 3 above are represented in form of
specifications representing the CVE/CAN vulnerabilities. These specifications
include preconditions about the target host as well as network preconditions
and describe effects that the vulnerabilities have on the attacker and possibly
on the network and target host. A vulnerability is described by expressions
with the following structure:

V 1 a check if the target host is configured vulnerable

• the target host has installed a product or products that are vulnera-
ble with respect to the given vulnerability
• if necessary other preconditions are checked; for example, it could

be essential for a vulnerability that a trust relation is established (as
for example used in remote shell hosts allow/deny concepts)

V 2 a check if the target host is currently running the respective products (for
example a vulnerable operating system or server version);
if a user interaction is required this includes a check if the vulnerable
product is currently used (for example a vulnerable internet explorer)

V 3 a check for necessary network preconditions, including a check if the
target host is reachable on the port the vulnerable product is using from
the host the attacker selected as source
⇒ this implicitly includes firewall rules (the model could be extended to
explicitly model firewalls through extra transitions but this would blow up
the state space significantly)

12

. .

V 4 an expression to cover the effects for the attacker ; for example, to obtain
additional user or root credentials on the target host

V 5 an expression to implement the direct impact on the network and host ;
for example, to shut down a service caused by buffer overflow

Attacker knowledge and behaviour
Attacker capabilities are modelled by the knowledge of exploits and hosts and
the credentials on the known hosts that constitute the attackers profile. Knowl-
edge of hosts changes during the computation of the attack graph because the
attacker might gain new knowledge when capturing hosts. For example, if the
attacker captures a portal or a host used as a firewall or a gateway he gets all
information this host has. On the other hand, some knowledge may become
outdated because the enterprise system changes ip-numbers or other con-
figuration of hosts and reachability. Several different attackers can easily be
included because an attacker is modelled as a role not a single instance and
the tool can automatically generate multiple instances from one role definition.
Optionally it is possible to specify extra transitions modelling an assumed im-
pact an attacker might produce as for example shut down intrusion detection
systems, send wrong or misleading information, shut down other services, de-
nial of service attacks or other actions. But all this blows up the computation
space and should be carefully used.

Monotonicity and invalid knowledge
It is not clear what is the best strategy to cope with dynamically changing con-
figuration of hosts. To try keep the attacker knowledge monotone growing and
get an attack graph without loops it is useful to model the knowledge as appli-
cable only for some time interval but then if for example a host could change
its ip-address arbitrarily the attack graph always grows with each change.

Assembling components of the model

The applied specification method based on asynchronous product automata
(APA) is supported by the SH verification tool developed at “Fraunhofer-Institute
Secure Telecooperation” (Ochsenschläger et al., 1999, 2000a). This tool pro-
vides components for the complete cycle from formal specification to exhaus-
tive validation. The tool has been adapted and extended for the presented field
of application.

The project management of the SH verification tool allows to select alterna-
tive parts of the specification and automatically “glues” together selected parts
of the specified components (see figure 1) to generate a combined model of

13

. .

enterprise network specification, vulnerability and exploit specification and at-
tacker specification. This can be used to answer Q 2 , Q 3 and Q 4 (see
introduction). A very flexible selection of variants of analysis scenarios is imple-
mented. The components are listed in a project tree and can be (de)activated
by mouse-click. So it is easy for example to exchange libraries of specified
vulnerabilities and exploits to analyse different versions and combinations of
formal models and even compare different computed attack graphs or abstrac-
tions thereof in the analysis component of the tool.

Computation of attack graphs

After an initial configuration is selected, the attack graph (reachability graph) is
automatically computed by the SH verification tool according to the definition
in figure 2.

Two extra transitions that have turned out to be very useful have been in-
cluded in the model as preprocessing steps. One computes the vulnerabilities
per host from the information on products installed per host and vulnerabilities
per product, the other generates a set of known exploits for the attacker(s) from
a given algorithm. If for example it is assumed that the attacker knows 3 dif-
ferent exploits, then all combinations of 3 exploits from the set of all specified
exploits have to be computed and further analysed.

To stop computation automatically when specified conditions are reached
(or invariants are broken), so called break conditions can be specified using
regular expressions. A violation of a security property for example, can in
many cases be specified as a break condition.

For a quick check if something went wrong with the definition of the model,
some statistic information is collected during computation of the graph. It can
be used to find out, what state transitions appeared how often and what differ-
ent values have been assigned to the state components during the computa-
tion.

Analysis of an attack graph

The main purpose of attack graph analysis is, to provide support for the per-
sons in charge to assess the risks and the effects of possible countermeasures
for the threatened network infrastructure.

The methodology for the analysis of an attack graph presented here that is
outlined in figure 5 supports that process. It assists in revealing complex attack
combinations and supports the systematic evaluation of possible solutions to
minimise risk with given resources.

14

. .

 pattern textually
- using APA defined by transition
- using graphical defined APA
 functions defined in preamble
- using datastructures and

and state transitions
specify system components

 ’glued’ together
- selected components are automatically
 structuring
- project manager supports hierarchical
set initial configuration
selected active components &

- specify security invariants to stop analysis
- fully automatic computation

- represented as attack graph -
generate partial or complete system behaviour

- use as high level debugging
- visualise simulation paths

system behaviour interactively
explore interesting parts of the

- using temporal logic component
- using regular search expressions

specify and check security properties

- visualise abstract view
- compute abstract behaviour
- support by special editor

specify abstractions

 for each graph node based on shortest path analysis
- automatically compute accumulated cost benefit values
- assign benefit (for attacker) based on impact costs
- assign costs to basic transitions (exploits)

perform cost benefit analysis

 like MITRE/ICAT
 and (formal) vulnerability descriptions
- generate state transitions from databases
 scanners like Nessus
 from output of network and security
- generate datastructures and functions

system components and state transitions
tool-based generation of specification of

not yet

Figure 5. Computation and analysis of attack graphs

In the following paragraphs it is shown how to find answers to the questions
posed in the introduction through analyses that can be accomplished after an
attack graph is successfully computed. Many other interesting evaluations can
be performed without question.

Finding violations of security properties

Security is not a singular property of a system. Depending on precisely what
capabilities an attacker has, different properties for the system model have to
be proven.

Formal specification of properties
System properties that are explicitly given by break-conditions can be checked
during computation of the attack graph. Alternatively, security properties given

15

. .

in form of search queries, Büchi-automata or temporal logic formulae can be
verified after the graph is computed.

Finding states violating a safety (security) property
If a security property can be specified by a regular expression so that it is
possible to check for a violation by inspecting a single node or edge then the
property can be proven by a simple “search query” on the reachability graph.
Often this can be supported in the model by collecting necessary information
during the computation of the graph.

Model checking
If it is required to inspect some or all paths of the graph to check for the violation
of a security property, as it is usually the case for liveness properties, then the
temporal logic component of the SH verification tool can be used. Temporal
logic formulae can also be checked on the abstract behaviour (under a simple
homomorphism). A method for checking approximate satisfaction of properties
fits exactly to the built-in simple homomorphism check (Ochsenschläger et al.,
1999).

These methods provide appropriate support to answer question Q 1 from the
introduction and are also helpful to research into many other questions.

Abstraction and visualisation of attack graphs

Abstraction capabilities of the SH verification tool support the definition of map-
pings, summarising or omitting transitions in the attack graph. The result is
a view focussed on some interesting aspect of the behaviour of the system.
Technically this is implemented as a computation of the minimal automaton
for an abstraction of the reachability graph that is specified via alphabetic lan-
guage homomorphisms (Ochsenschläger et al., 2000b).

It is possible for example, to map multiple exploits with the same effects
onto the same subsuming activity like “get-root-access”. This can be used to
answer questions like Q 7 from the introduction. Another example is, to omit
all exploits that are not detected by some intrusion detection component, in or-
der to get a graph showing only the traces that an attack correlation component
would see. Abstractions can also be defined using predicates. It is possible
for example, to omit all transitions below a certain cost-benefit ratio using an
appropriate predicate.

16

. .

Analysing IDS pattern detection

The transition patterns representing atomic exploits are modelled to include
the behaviour of intrusion detection components, therefore their behaviour and
their coaction to recognise attack pattern can be analysed. This helps to an-
swer the question Q 5 (What attacks are detected ?) from the introduction.

Detections that are directly related to an atomic exploit are visible in the
attack graph, because an intrusion detection check E 5 is included in each
transition modelling an atomic exploit.

In more complex cases, evidence of attacks against the network is scat-
tered over several atomic exploits on one host or several different hosts. The
installed intrusion detection systems therefore have to collect and correlate
information from different sources (Krügel and Toth, 2002).

Analysing the attack graph with regard to the required security properties
leads to a detection of the paths that violate those properties. Abstraction
helps to filter out the information concerning intrusion detection and gives a
graph that visualises the correlation that is required to detect these violations.
Now a scheme of coaction of intrusion detection components to detect this
malicious behaviour or a superordinated component that checks for combined
patterns can be designed.

Question Q 6 (What are the effects of changes to intrusion detection sys-
tems on overall detection of attacks ?) can be answered by comparing intrusion
detection analysis of different attack graphs computed for different configura-
tions selected in the project management component. It is useful to combine
several features supported by the SH verification tool to answer this question.
To filter out the intrusion detection information, abstractions of the different at-
tack graphs are required. Based on this abstracted behaviour, a comparison
of the behaviour of different versions is possible. The tool supports a compar-
ison of those graphs and additionally the results of search queries and model
checking helps finding the effects in question, but this task requires careful
modelling, abstraction and finding the right properties to check.

Simulation

If the attacker has too many alternatives or the network is too complex, the
state space of the composition of the selected specifications and their complex
interplay may become too big to compute the complete behaviour. In this case
it is appropriate to inspect selected parts of the state space. Simulation of
interesting attack combinations is possible by interactive selection of paths in
the visual representation of the part of the attack graph already computed and
automatic proceeding in the selected direction. Other variants of simulation
are also supported by the tool (for instance random driven). The seamless

17

. .

transition between verification and simulation on the same model is a particular
strength of the approach presented here.

Cost benefit analysis

Cost benefit analysis as described in this paragraph is meant as a means to
help assess the likely behaviour of an attacker. Cost ratings (from the view
of an attacker) can be assigned to each exploit, for example to denote the
time it takes for the attacker to execute the exploit or the resources needed to
develop an exploit. If not only technical vulnerabilities are modelled but also
human weaknesses are considered, then cost could mean for example the
money needed to buy a password.

Based on these cost assignments, the shortest (least expensive) path from
the root of the attack graph to a node representing a successful attack can
be computed and visualised. This helps to answer question Q 8 (What is
the attack with the least costs breaking a given security property ?) from the
introduction.

A benefit for the attacker based on the negative impact he achieves can also
be assigned, for example to indicate the worth regarding relative importance
of the captured host.

Summarised costs and benefits can be compared for selected paths or the
whole graph. For example searching for the node with the greatest benefit for
the attacker answers question Q 9 from the introduction.

Comparing some configurations with available intrusion detection systems
placed at different locations and computing attack graphs only for undetected
attacks can help to decide what is a better position for the intrusion detection
systems when looking at the maximum benefit for the attacker being unde-
tected in the different scenarios (see also Q 10 from the introduction). To find
a good coverage of intrusion detection given restricted resources, only rela-
tive evaluation of some predefined variants is intended here. It is shown in
(Jha et al., 2002) that to decide which minimal set of security measures would
guarantee the safety of the system is polynomially equivalent to the minimum
hitting set problem (NP-complete).

Survivability analysis

So far it was assumed that the enterprise network system does not react during
an attack. This is in general a useful assumption to keep the graph of the
system behaviour manageable. However the following extensions to the model
can give valuable insight into related problems.

18

. .

Game: System against attacker
In some cases it is interesting to consider some counter-play of the system.
In Germany for example an ip-address for a dsl-connection is allocated dy-
namically and automatically changed every 24 hours. If for example the hosts
of some teleworkers are part of the modelled enterprise system it is useful to
check what effect this behaviour has on the attack analysis. Also if an attack is
time consuming, it is possible, that it will be detected not only by an intrusion
detection system but also possibly by some other security scanner tool or a
human administrator checking the given configuration at certain time intervals.
It is desirable to augment the model by some counteraction to describe for ex-
ample a cut of a network connection in critical cases or the reconfiguration of
a system.

Mission critical e-services
It is often very important, that even when an enterprise network system is un-
der attack, at least some mission critical e-services survive that attack. There-
fore it is essential, that it is possible to augment the attack scenario to include
actions of the critical e-service and to analyse the extended scenario.

To verify if a given e-service survives an attack, a formal model of its com-
ponents and their interplay must be added to the system model. The combined
model can then be analysed by computing its dynamic behaviour and examin-
ing the generated state space. New safety and usually also liveness properties
that constitute the required behaviour of the e-service have to be specified and
verified. This helps in answering for example question Q 11 from the intro-
duction. A methodology for developing an e-service so that it is robust against
attacks has been described in (Rieke, 2003).

Because of the well known state space explosion problem, the extended sce-
narios have to be specified on a high abstraction level in order be able to com-
pute the complete reachability graph. To find an appropriate abstraction level,
it is essential to incorporate the hints given in the previous section concerning
representative hosts. One should also consider to summarise similar attacks
onto a representative abstract attack. For example only use the abstract at-
tacks “get-user-access”, “get-root-access” and “from-user-to-root-access”.

Specification and analysis of an example scenario

To illustrate the methods described so far, a small example scenario is given
now. The components are specified, the respective attack graph is described
and some typical analysis outcome is sketched.

19

. .

Scenario specification

Figure 6 shows the example scenario with the enterprise hosts namedms host,
nix host, portal, db server located inside the enterprise network and the host
telework connected from the internet as well as the host attacker. Vulnerabil-
ities of the hosts needed for specification part S 2’ derived from the products
installed and the product vulnerabilities are denoted below the host-names.

The installed intrusion detection components for specification part S 4 are
depicted in figure 6 by the rhombic nodes. IDS type1 is a network based sys-
tem that detects exploits named CAN 2003 0693 ssh exploit and rsh login
attempts. One IDS of that type is installed between the internet and the host
portal, the other is installed to control the traffic between the portal and
the host db server. Furthermore a host based intrusion detection component
IDS type2 that detects exploits of type CAN 2002 0649 sql exploit is installed
directly on host db server.

enterprise network

internet

CAN_2003_0715
CAN_2002_0649

db_server

CVE_1999_0035
CAN_2003_0693
CAN_2003_0620

nix_host

CAN_2003_0715
teleworkAttacker

CAN_2003_0694
CAN_2003_0693

portal

CAN_2003_0715
CAN_2002_1262

ms_hostCAN_2002_0649_sql_exploit
 detects
 IDS_type2

 rsh_login
CAN_2003_0693_ssh_exploit
 detects
 IDS_type1

 rsh_login
CAN_2003_0693_ssh_exploit
 detects
 IDS_type1

Figure 6. Example scenario

More information for specification part S 1 is provided by the tables in fig-
ure 7, showing the reachability of ports on all hosts and the active services.
Some abbreviations are used here, namely zone internet is an abbreviation
for the hosts telework, attacker, portal and zone intern is used for portal,

20

. .

nix host, db server and ms host. The abbreviation port all means reacha-
bility for all ports and finally the abbreviation net means physically connected.

Knowledge to be captured is only available on the portal that knows the
addresses of all hosts. This could be used for example by the attacker to find
out the dynamic allocated address of the telework host, that might be not so
well administrated as the enterprise hosts directly connected to the network.

Host Service Port User
telework netbios ssnd netbios ssn port root

nix host ftpd ftp port root

nix host sshd ssh port root

nix host rshd rsh port root

db server ftpd ftp port root

db server rshd rsh port root

db server sql res ms sql m port db user

ms host dcom root

ms host netbios ssnd netbios ssn port root

portal sendmaild smtp port root

portal sshd ssh port root

Source Host Target Host Port
zone internet zone internet port all
zone all portal ssh port
zone all portal smtp port
portal zone intern port all
zone intern zone all net
zone intern zone intern ftp port
zone intern zone intern rsh port
zone intern zone intern ssh port
db server ms host rpc port

Figure 7. Host reachability and installed services

Attacker profile
It is assumed that the attacker knows all exploits that are specified in detail be-
low, namely CAN 2002 0649 sql exploit, CAN 2003 0620 man db exploit,
CAN 2003 0693 ssh exploit, CAN 2003 0693 ssh exploit stealth,
CAN 2003 0694 sendmail exploit, CAN 2003 0715 dcom exploit,
CVE 1999 0035 ftp exploit and the pseudo exploit rsh login.

In the initial configuration the attacker has root credentials on the host
attacker and no other access. The attacker nows the static addresses of
all hosts except the dynamic address of the host telework. The attacker has
no other knowledge. This completes the specification part S 3 .

Vulnerabilities and exploits
The vulnerabilities and exploits described below are used in the example sce-
nario. They are not described in detail here; more details are found at MITRE
(see http://cve.mitre.org/) and ICAT (see http://icat.nist.gov/) sites.

Vulnerability CVE 1999 0035, an error in ftpd allowing to read/write arbi-
trary files is used to manipulate files to establish remote shell trust and this in
turn used in combination with the rsh login which is not a real vulnerability but
a weak configuration to get remote access. This old vulnerability has been in-
cluded because this example was used in some of the papers cited in the sec-
tion on related work, to make it easier to compare different approaches. The
related exploit using this vulnerability is named CVE 1999 0035 ftp exploit.

21

. .

The vulnerabilities CAN 2003 0620 (a buffer overflows in man-db) and the
related exploitCAN 2003 0620 man db exploit, CAN 2003 0693 (a buffer man-
agement error in OpenSSH) and the related exploitsCAN 2003 0693 ssh exploit

andCAN 2003 0693 ssh exploit stealth, CAN 2003 0715 (a heap-based buffer
overflow in DCOM) and the related exploit CAN 2003 0715 dcom exploit,
CAN 2003 0694 (a buffer overflow in sendmail) and the related exploit
CAN 2003 0694 sendmail exploit as well as CAN 2002 0649 (buffer over-
flows in SQL server) and the related exploit CAN 2002 0649 sql exploit are
used to directly get access rights on a remote host. An example of the imple-
mentation of an exploit in SH verification tool syntax is given in figure 8.

;
 /* E7: no additional impact in this example*/
 cost_benefit(’CAN_2003_0693_ssh_exploit’,T,’root’) = ’true’
 /* E6: assign cost benefit values */
 ids_check(’CAN_2003_0693_ssh_exploit’,S,T) = ’true’,
 /* E5: intrusion detection check */
 get_knowledge(T) = ’true’,
 /* E4: attacker gets all knowledge of host T */
 CAN_2003_0693(S,T,plvl_T) = ’true’,
 /* E3: is target vulnerable from source */
 plvl_T ~= ’root’, /* no root access on host T */
 (T,plvl_T) ? Attacker_plvl_state, /* select target host */
 rank(plvl_S) >= rank(’user’), /* user access on host S */
 (S,plvl_S) ? Attacker_plvl_state, /* select source host */
 /* E2: selection of source and target host
 ’CAN_2003_0693_ssh_exploit’ ? Attacker_known_exploits_state,
 /* E1: intruder knows exploit */
 (S, T, plvl_S, plvl_T)
 /* attack from host S to host T */

def_trans_pattern Attacker CAN_2003_0693_ssh_exploit

 (T,((’sshd’,port),plvl_service)) << host_service_state
 /* V5: direct impact (host T is no longer running sshd) */
 (T,max_access(plvl_service,plvl_T)) >> Attacker_plvl_state,
 (T,plvl_T) << Attacker_plvl_state,
 /* V4: effects for attacker (get sshd privileges on host T) */
 reachable((S,T,port),zone_zone_port_seq(),zone_def_seq()) = ’true’,
 /* V3: is host T reachable from S on port ssh ? */
 (T,((’sshd’,port),plvl_service)) ? host_service_state,
 /* V2: is host currently running sshd ? */
 (T,’CAN_2003_0693’) ? host_vulnerability_state,
/* V1: is host configured vulnerable ? */

/* E3: is target vulnerable ?*/

Figure 8. Transition pattern for CAN 2003 0693 ssh exploit

Analysis of the scenario

Attack graph of the example scenario
The computed attack graph for this scenario has 142 nodes and 544 edges.
Figure 9 shows a small section of it. The oval nodes depict single states, the
rectangular nodes depict states with a hidden subgraph that can be expanded
by mouse-click. The red (dotted) nodes mark states where the attacker has
been detected by an intrusion detection component.

Check security properties
As an example for a security property to be checked for the scenario it is
assumed that it is essential that an attacker can not gain any access at the
db server. The search query

({Attacker_plvl_state:<y>| sfind((’db_server’,’db_user’),y) =0},,

{Attacker_plvl_state:<x>| sfind((’db_server’,’db_user’),x) >0});

22

. .

checks if there are transitions in the graph where the attacker gains access as
db user at the db server. For this query 66 matching edges are found.

M-7

M-22

M-21

M-20

M-19

M-18

M-6

M-17

M-16

M-15

M-14

M-13

M-5

M-12

M-11

M-10

M-9

M-8

M-4 Attacker_CAN_2003_0693_ssh_exploit $(3 . 20)

Attacker_CAN_2003_0693_ssh_exploit_stealth $(4 . 20)

Attacker_CAN_2003_0694_sendmail_exploit $(4 . 20)

Attacker_CVE_1999_0035_ftp_exploit $(2 . 2)

Attacker_CAN_2003_0693_ssh_exploit $(3 . 10)

Attacker_CAN_2003_0693_ssh_exploit_stealth $(4 . 10)

Attacker_CAN_2003_0715_dcom_exploit $(4 . 10)

Attacker_CAN_2002_0649_sql_exploit $(4 . 45)

Attacker_CVE_1999_0035_ftp_exploit $(2 . 2)

Attacker_CAN_2003_0693_ssh_exploit $(3 . 10)

Attacker_CAN_2003_0693_ssh_exploit_stealth $(4 . 10)

Attacker_CAN_2003_0715_dcom_exploit $(4 . 10)

Attacker_CAN_2002_0649_sql_exploit $(4 . 45)

Attacker_CVE_1999_0035_ftp_exploit $(2 . 2)

Attacker_CAN_2003_0693_ssh_exploit $(3 . 10)

Attacker_CAN_2003_0693_ssh_exploit_stealth $(4 . 10)

Attacker_CAN_2003_0715_dcom_exploit $(4 . 10)

Attacker_CAN_2002_0649_sql_exploit $(4 . 45)

Figure 9. Attack graph of example scenario (small section)

Maximal impact
The computed attack graph for the example scenario has 18 so called dead
markings. In cases where the graph has no loops these are the leafs of the
graph. They denote states where no further processing occurs because the
attacker has no more applicable atomic exploits available or has already cap-
tured all hosts.

Selecting an arbitrary dead marking and let the tool generate a way to the
root node produces a path as shown in figure 10. The edge labels denote the
atomic exploit chosen in that step as well as the target and source host. The
first 2 edges represent state transitions for preprocessing steps as explained in
the section on computation of attack graphs. The red (dotted) nodes M85, M-
122,M140 denote states where the attacker has already been detected. There
is much more information available for each transition but this is hidden here by
a presentation abstraction to keep the example readable. The numbers after
the $-sign are explained in the next paragraph.

Inspecting the attackers knowledge at the dead marking M140 shows that

23

. .

he gained root access on hosts attacker, ms host, nix host and portal and
furthermore he gained db user access on db server but none on telework.

M-1 (($ 0 . 0))

M-2 (($ 0 . 0))

M-4 (($ 0 . 0))

M-7 (($ 4 . 20))

M-18 (($ 6 . 22))

M-45 (($ 10 . 32))

M-85 (($ 14 . 77))

M-122 (($ 15 . 83))

M-140 (($ 18 . 93) DEAD)

(Attacker_CAN_2003_0620_man_db_exploit (T = nix_host)) $(3 . 10)

(Attacker_rsh_login (S = portal T = nix_host)) $(1 . 6)

(Attacker_CAN_2002_0649_sql_exploit (S = portal T = db_server)) $(4 . 45)

(Attacker_CAN_2003_0715_dcom_exploit (S = portal T = ms_host)) $(4 . 10)

(Attacker_CVE_1999_0035_ftp_exploit (S = portal T = nix_host)) $(2 . 2)

(Attacker_CAN_2003_0694_sendmail_exploit (S = attacker T = portal)) $(4 . 20)

(Attacker_select_exploit (Attacker_known_exploits_state = ::)) $(0 . 0)

(Preprocessor_gen_vulnerabilities (host_vulnerability_state = ::)) $(0 . 0)

Figure 10. Path to root with cost benefit annotations

Cost benefit evaluation
For cost benefit evaluations an adequate measure has to be defined. In the
example scenario it is assumed, that costs reflect the effort an attacker uses
in each step of the attack. Costs are directly assigned to the atomic exploits in
this example, whereas the benefit for a transition is computed as the worth of
the target host multiplied by the rank of the access right gained. The benefit
for the attacker reflects the negative impact for the enterprise. Of course other
kinds of measures for cost and benefit or other appropriate measures could
be implemented following the proposed scheme. Assumed costs and benefits
per exploit for specification part S 5 of the example scenario are assigned as
shown in the tables in figure 11.

24

. .

Exploit Cost
CAN 2003 0693 ssh exploit 3
CAN 2003 0693 ssh exploit stealth 4
CVE 1999 0035 ftp exploit 2
CAN 2003 0620 man db exploit 3
CAN 2003 0715 dcom exploit 4
CAN 2003 0694 sendmail exploit 4
CAN 2002 0649 sql exploit 4
rsh login 1

Host Worth
telework 1
attacker 0
nix host 2
ms host 2
db server 9
portal 4

Access Rank
none 1
restricted user 2
user 3
db user 4
root 5

Figure 11. Cost benefit values

Now by shortest path computation in a post-processing step on the attack
graph, the values for cost and benefit can be summed up along the paths with
the least cost to any node. The cost and benefit of a transition is depicted by
the numbers after the $-sign at the edges in figure 10 that shows an example
path in the attack graph with annotated cost benefit annotations. The sums
along the path are depicted inside the nodes in the same figure.

A search for the node with the highest benefit score for the attacker (where
most negative impact is achieved) returns the node M135 which has the same
benefit rating namely 93 as the node M140 in figure 10.

Cut down the graph
Defining a condition that stops further computation after an attack has been
detected by an intrusion detection component generates only a subgraph with
57 nodes (33 dead) and 95 edges. The graph reduced to only undetected
attacks generates a subgraph with only 24 nodes (4 dead) and 60 edges.

Cost benefit analysis for the graph with undetected attacks shows that the
maximum benefit an attacker can obtain undetected in this scenario is 48.
Inspecting the respective node in the attack graph shows that the attacker has
gained root access on hosts attacker, ms host, nix host and portal but no
access on db server and telework.

Abstraction
In some applications the SH verification tool already computed graphs of about
1 million edges in acceptable time and space. But it is impossible to visualise
a graph of that size. So abstraction focussing on some interesting aspect is
definitely a comfortable way to go in this case. An example for the usage of
behaviour abstraction is shown in figure 12. The abstract view in this case
shows that only one type of exploit can be used to attack the db server and
the graph is reduced from 544 edges to only one edge in the abstracted be-
haviour. The predicate used to define the corresponding mapping hides (maps
to epsilon) all transitions that don’t have the target host db server.

25

. .

A-1A-2
start: (Attacker_CAN_2002_0649_sql_exploit)

Figure 12. Attack graph abstraction showing transitions with target db server

Figure 13 shows an abstraction focussing on transitions with benefit > 10
and the resulting graph is also very concise.

A-3
start:

A-2

A-1

((,Attacker_CAN_2003_0694_sendmail_exploit(Benefit>10),)) (2)
((,Attacker_CAN_2003_0693_ssh_exploit_stealth(Benefit>10),))

((,Attacker_CAN_2003_0693_ssh_exploit(Benefit>10),))

((,Attacker_CAN_2002_0649_sql_exploit(Benefit>10),))

Figure 13. Attack graph abstraction showing transitions with benefit > 10

System countermeasures and critical services
As an example for a check for critical services availability and to demonstrate
how system countermeasures can be added to the framework defined so far,
it is assumed that the host db server always tries to answer queries from host
teleworker. As a precondition the server checks if sshd is running on the
portal because a “ssh-tunnel” on that host is used to reach teleworker. Now
as shown in figure 8 (in condition V 5) the attacker kills the sshd when execut-
ing the CAN 2003 0693 ssh exploit. So if the attacker applies this exploit to
attack the host portal, then afterwards the sshd is not active on that host and
so db server cannot send an answer to telework anymore. Now additionally
a system countermeasure is considered that restarts the sshd on the portal
from time to time. Two transitions patterns, namely T Defence Restart sshd
and T Service Answer add these actions to the model. The defence opera-
tion restarts sshd when it is down and the service action checks for an active
sshd on portal. No other details are added to keep the model small.

Now a new computation of the attack graph results in a graph with 234
nodes (0 dead !) and 1136 edges. A section of this graph is shown in figure 14.

26

. .

M-38

M-88

M-78

M-73

M-13

M-11
Service_answer

Attacker_CAN_2002_0649_sql_exploit

Attacker_CAN_2003_0693_ssh_exploit_stealth (3)
Attacker_CAN_2003_0693_ssh_exploit

Defence_Restart_sshd

Attacker_CVE_1999_0035_ftp_exploit (3)

Attacker_CAN_2003_0715_dcom_exploit (2)

Figure 14. Section of attack graph with service and countermeasure

A typical liveness question for the sketched situation is Q 11 from the in-
troduction (Is a client still able to get answers from a DB-server when the enter-
prise network is under attack ?). Using an appropriate type of model checking,
approximate satisfaction of temporal logic formulae can be checked by the SH
verification tool (Ochsenschläger et al., 1999, 2000a). In terms of temporal
logic the property above can be written as G F Service Answer (always even-
tually Service Answer) which is found to be true by the tool.

Lifting the assertion that the attacker only attacks a host if he gains some
credentials for the CAN 2003 0693 ssh exploit (see figure 8 the check for “no
root access” on target host in E 2) leads to an attack graph with 3062 nodes (0
dead) and 22228 edges. This illustrates the dramatic influence of monotonicity
assumptions on attack graph growth.

Related work

The approach that Phillips and Swiler first presented in (Phillips and Swiler,
1998) is closest to the approach proposed in this paper. They described a
prototype tool implementing their method in (Swiler et al., 2001). Similar to
the computation method based on the SH verification tool outlined here, their
method computes an attack graph starting from an initial node, but they don’t
describe abstraction methods to visualise compact presentations of the graph
and they don’t address liveness analysis that is used here to assure system
response to critical services under attack.

Jha, Sheyner, Wing et al. use scenario graphs in (Jha and Wing, 2001) and
attack graphs (Jha et al., 2002; Sheyner et al., 2002) that are computed and
analysed based on model checking.

Ammann et al. presented an approach in (Ammann et al., 2002) that is
focussed on reductions of complexity of the analysis problem from exponential
to polynomial by explicit assumptions of monotonicity.

27

. .

Conclusions

Within the critical infrastructure protection context this paper aims at the pro-
tection of the core information infrastructure although the methods presented
here could be extended and applied to other types of infrastructure and threats.
The presented methodology for computation and analysis of attack graphs out-
lined in figure 5 is based on a formal specification of an organisation’s criti-
cal network infrastructure, supplemented by a generic vulnerability and exploit
specification and an attacker specification to model the threats against that
infrastructure. The tool supported analysis of the attack graph assists in re-
vealing vulnerabilities of the threatened infrastructure including complex attack
combinations and supports the systematic evaluation of possible solutions to
minimise risk with given resources. Contributions of this work are:

Specification framework for critical network infrastructures and threats
It is worked out in detail, how to formally specify topology and components of
the information infrastructure and represent it by state components in asyn-
chronous product automata (APA) notation. The operational formal system
specification is completed by specifications of vulnerabilities, exploits and at-
tacker capabilities represented by APA state transitions (see figures 1, 3 and 4).
Specific templates to support and simplify formal modelling of enterprise net-
works under attack have been developed. Moreover, extensions to the model
to add system defence operations and critical services actions are proposed,
supplemented by some abstraction concepts, to prevent state space explosion
problems in such models.

Methodology and tool to analyse vulnerabilities and countermeasures
From the APA specification an attack graph representing the behaviour of the
model is automatically computed. Based on this graph, tool supported analy-
sis methods are presented that can be used to answer the various questions
posed in the introduction. Specific features of this approach comprise:

• an integrated interactive visualisation support to browse or debug the
behaviour of the model and explore selected parts of the graph

• the usage of a well-elaborated and formally proven abstraction concept
combined with an appropriate model checking component for analysis of
security and liveness properties

• an integrated cost-benefit analysis method

• a seamless transition between verification and simulation on the same
model when a complete computation of the attack graph is not possible

• a flexible configuration management simplifies evaluation and compari-
son of different solutions

28

. .

Further research objectives
To seamlessly integrate the methods and tool presented here into a network
vulnerability analysis framework, a tool-assisted transformation of a system
configuration as provided by administration databases or gathered by network
scanners into formal specifications is required. Likewise, some improvement
towards generic formal vulnerability and exploit specifications is needed.

An in-depth research objective is, to develop methods and tool support to
reduce state space explosion by further elaborating the ideas on abstraction of
the system specification as sketched in the paragraphs about “representative
hosts”. For such a tool assisted specification abstraction, it has to be (automat-
ically) proven, that the system specification is appropriately transformed into
the abstracted specification, to assure that system properties are transported
from a lower to a higher level of abstraction and no critical behaviour is hidden.

Another interesting perspective is, to extend the specification and analysis
method described in this paper for application in other similar structured sce-
narios, as for example, to model a networked infrastructure system of a country
including specifications of mutual dependencies as described in (Luiijf et al.,
2003). Such a model could be used to analyse vulnerabilities and to raise risk
awareness. It could help to reveal complex attack combinations and support
systematic evaluation of possible solutions. This approach aims at optimising
security and protection of networked systems with given resources.

References

Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-
based network vulnerability analysis. In Proceedings of the 9th ACM con-
ference on Computer and communications security, pages 217–224. ACM
Press New York, NY, USA, 2002. ISBN 1-58113-612-9.

Urs E. Gattiker, Hervé Debar, Gasper Lvarencic, Giannis A Pikrammenos, Jer-
man Borka, Roland Rieke, Atta Badii, Yong Hua Song, Theis Søndergaard,
Rainer Fahs, Helga Treiber, and Mario Wolframm. Cyber attack methods
detection & information exploitation research project proposal, 2003. URL
http://www.eicar.org/camdier/index.html.

S. Gürgens, P. Ochsenschläger, and C. Rudolph. Role based specification
and security analysis of cryptographic protocols using asynchronous prod-
uct automata. In DEXA 2002 International Workshop on Trust and Pri-
vacy in Digital Business. DEXA, 2002a. URL http://www.sit.fhg.de/

english/META/meta_publications/doc/Dexa2002-abstract.pdf. Copy-
right: c©2002, IEEE. All rights reserved.

S. Gürgens, P. Ochsenschläger, and C. Rudolph. Authenticity and Provability

29

. .

- a Formal Framework. GMD Report 150, Fraunhofer-Institute for Secure
Telecooperation, 2002b.

Somesh Jha and Jeannette M. Wing. Survivability analysis of networked sys-
tems. In Proceedings of the 23rd international conference on Software en-
gineering, pages 307–317. IEEE Computer Society, 2001.

Somesh Jha, Oleg Sheyner, and Jeannette M. Wing. Two formal analyses
of attack graphs. In 15th IEEE Computer Security Foundations Workshop
(CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova Scotia, Canada,
pages 49–63. IEEE Computer Society, 2002.

Christopher Krügel and Thomas Toth. Distributed pattern detection for intru-
sion detection. In Network and Distributed System Security Symposium
Conference Proceedings: 2002, 1775 Wiehle Ave., Suite 102, Reston, Vir-
ginia 20190, U.S.A., 2002. Internet Society. URL citeseer.nj.nec.com/

501183.html.

E. Luiijf, H. Burger, and M. Klaver. Critical infrastructure protection in the
netherlands: A quick-scan. In EICAR Conference Best Paper Proceedings,
May 2003.

Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducassé. M2d2: A
formal data model for ids alert correlation. In Recent Advances in Intrusion
Detection, 5th International Symposium, RAID 2002, Zurich, Switzerland,
October 16-18, 2002, Proceedings, volume 2516 of Lecture Notes in Com-
puter Science, pages 115–137. Springer, 2002.

P. Ochsenschläger, J. Repp, and R. Rieke. The SH-Verification Tool. In Proc.
13th International FLorida Artificial Intelligence Research Society Confer-
ence (FLAIRS-2000), pages 18–22, Orlando, FL, USA, May 2000a. AAAI
Press. ISBN 0-1-57735-113-4.

Peter Ochsenschläger, Jürgen Repp, Roland Rieke, and Ulrich Nitsche. The
SH-Verification Tool Abstraction-Based Verification of Co-operating Sys-
tems. Formal Aspects of Computing, The International Journal of Formal
Method, 11:1–24, 1999.

Peter Ochsenschläger, Jürgen Repp, and Roland Rieke. Abstraction and com-
position – a verification method for co-operating systems. Journal of Exper-
imental and Theoretical Artificial Intelligence, 12:447–459, June 2000b.

Cynthia A. Phillips and Laura Painton Swiler. A graph-based system for
network-vulnerability analysis. In NSPW ’98, Proceedings of the 1998 Work-
shop on New Security Paradigms, September 22-25, 1998, Charlottsville,
VA, USA, pages 71–79. ACM Press, 1998.

30

. .

Roland Rieke. Development of formal models for secure e-services. In Eicar
Conference 2003, May 2003. URL http://www.sit.fhg.de/english/META/

meta_publications/doc/Eicar-2003.pdf.

Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lippmann, and Jean-
nette M. Wing. Automated generation and analysis of attack graphs. In
2002 IEEE Symposium on Security and Privacy, May 12-15, 2002, Berkeley,
California, USA, pages 273–284. IEEE Comp. Soc. Press, 2002.

Laura P. Swiler, Cynthia Phillips, David Ellis, and Stefan Chakerian. Computer-
attack graph generation tool. In DARPA Information Survivability Conference
and Exposition (DISCEX II’01) Volume 2,June 12 - 14, 2001, Anaheim, Cal-
ifornia, pages 1307–1321. IEEE Computer Society, 2001.

31

