
c©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Original IEEE publication: http://doi.ieeecomputersociety.org/10.1109/PDP.2011.57

Security Properties of Self-similar Uniformly Parameterised Systems of
Cooperations

Peter Ochsenschläger and Roland Rieke
Fraunhofer Institute for Secure Information Technology, SIT

Darmstadt, Germany
Email: peter-ochsenschlaeger@t-online.de, roland.rieke@sit.fraunhofer.de

Abstract—Uniform parameterisations of cooperations are
defined in terms of formal language theory, such that each
pair of partners cooperates in the same manner, and that the
mechanism (schedule) to determine how one partner may be
involved in several cooperations, is the same for each partner.
Generalising each pair of partners cooperating in the same
manner, for such systems of cooperations a kind of self-
similarity is formalised. From an abstracting point of view,
where only actions of some selected partners are considered,
the complex system of all partners behaves like the smaller
subsystem of the selected partners. For verification purposes, so
called uniformly parameterised safety properties are defined.
Such properties can be used to express privacy policies as
well as security and dependability requirements. It is shown,
how the parameterised problem of verifying such a property
is reduced by self-similarity to a finite state problem.

Keywords-cooperations as prefix closed languages; abstrac-
tions of system behaviour; self-similarity in systems of co-
operations; privacy policies; uniformly parameterised safety
properties;

I. INTRODUCTION

As an example for cooperations let us consider an e-
commerce protocol, that determines how two cooperation
partners have to perform a certain kind of financial transac-
tions. As such a protocol should work for several partners in
the same manner, it is parameterised by the partners and the
parameterisation should be uniform w.r.t. the partners. It is
quite evident that similar requirements have to be fulfilled
in any highly scalable system or system of systems such
as cloud computing platforms or vehicular communication
systems in which vehicles and roadside units communicate
in ad hoc manner to exchange traffic information [1].

In this paper (Sect. III) we formalise uniform param-
eterisations of two-sided cooperations in terms of formal
language theory, such that each pair of partners cooperates
in the same manner, and that the mechanism (schedule)
to determine how one partner may be involved in several
cooperations, is the same for each partner. Generalising
each pair of partners cooperating in the same manner, the
following kind of self-similarity is desirable for such systems
of cooperations: From an abstracting point of view, where
only actions of some selected partners are considered, the
complex system of all partners behaves like the smaller

subsystem of the selected partners (Sect. IV).
For verification purposes it is of interest to know, which

kind of dynamic system properties are “compatible” with
self-similarity. Therefore in Sect. V so called uniformly
parameterised safety properties are defined. An example
shows how such properties can be used to express privacy
policies. Subsequently, it is shown how the parameterised
problem of verifying such a property is reduced by self-
similarity to a finite state problem under certain regularity
restrictions. Liveness aspects of self-similar systems will be
subject of a forthcoming paper (see Sect. VI).

II. RELATED WORK

Verification approaches for parameterised systems.:
An extension to the Murϕ verifier to verify systems with
replicated identical components through a new data type
called RepetitiveID is presented in [2]. During the verifica-
tion Murϕ checks if the result can be generalised for a family
of systems. The soundness of the abstraction algorithm is
guaranteed by the restrictions on the use of repetitiveIDs.
A typical application area of this tool are cache coherence
protocols. The aim of [3] is an abstraction method through
symmetry which works also when using variables holding
references to other processes which is not possible in Murϕ .
An implementation of this approach for the SPIN model-
checker (http://spinroot.com/) is described. In [4] a method-
ology for constructing abstractions and refining them by
analysing counter-examples is presented. The method com-
bines abstraction, model-checking and deductive verification
and in particular, allows to use the set of reachable states
of the abstract system in a deductive proof even when the
abstract model does not satisfy the specification and when
it simulates the concrete system with respect to a weaker
simulation notion than Milner’s. The tool InVeSt supports
this approach and makes use of PVS (http://pvs.csl.sri.com/)
and SMV (http://www.cs.cmu.edu/∼modelcheck/smv.html).
This approach however does not consider liveness properties.
In [5] a technique for automatic verification of parameterised
systems based on process algebra CCS [6] and the logic
modal mu-calculus [7] is presented. This technique views
processes as property transformers and is based on comput-
ing the limit of a sequence of mu-calculus formula generated

http://doi.ieeecomputersociety.org/10.1109/PDP.2011.57

by these transformers. In [8] we developed an abstraction
based approach to extend our tool supported verification
techniques to be able to verify families of parameterised
systems, independent of the exact number of replicated com-
ponents. The above-mentioned approaches demonstrate, that
finite state methods combined with deductive methods can
be applied to analyse parameterised systems. The approaches
differ in varying amounts of user intervention and their range
of application. A survey of approaches to combine model
checking and theorem proving methods is given in [9].

Iterated shuffle products.: In [10] it is shown that
our definition of uniformly parameterised cooperations is
strongly related to iterated shuffle products [11], if the
cooperations are “structured into phases”. For such systems
of cooperations a sufficient condition for the kind of self-
similarity which we use here is given. Under certain regu-
larity restrictions this condition can be verified by a semi-
algorithm. The main concept for such a condition are shuffle
automata [12] (multicounter automata [13]) whose computa-
tions, if they are deterministic, unambiguously describe how
a cooperation partner is involved in several phases.

The main contribution of this paper is to show how the pa-
rameterised problem of verifying a uniformly parameterised
safety property can be solved by means of the self-similarity
results of [10] and finite state methods.

III. PARAMETERISED COOPERATIONS

The behaviour L of a discrete system can be formally
described by the set of its possible sequences of actions.
Therefore L ⊂ Σ∗ holds where Σ is the set of all actions
of the system, and Σ∗ (free monoid over Σ) is the set of
all finite sequences of elements of Σ (words), including the
empty sequence denoted by ε . Subsets of Σ∗ are called
formal languages. Words can be composed: if u and v are
words, then uv is also a word. This operation is called the
concatenation; especially εu = uε = u. A word u is called
a prefix of a word v if there is a word x such that v = ux.
The set of all prefixes of a word u is denoted by pre(u);
ε ∈ pre(u) holds for every word u.

Formal languages which describe system behaviour have
the characteristic that pre(u)⊂ L holds for every word u∈ L.
Such languages are called prefix closed. System behaviour
is thus described by prefix closed formal languages.

Different formal models of the same system are partially
ordered with respect to different levels of abstraction. For-
mally, abstractions are described by so called alphabetic lan-
guage homomorphisms. These are mappings h∗ : Σ∗ −→ Σ′∗
with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ)⊂ Σ′∪{ε}.
So they are uniquely defined by corresponding mappings
h : Σ −→ Σ′ ∪ {ε}. In the following we denote both the
mapping h and the homomorphism h∗ by h. Inverse homo-
morphism are denoted by h−1. Let L be a language over
the alphabet Σ′. Then h−1(L) is the set of words w ∈ Σ∗
such that h(w) ∈ L. In this paper we consider a lot of

alphabetic language homomorphisms. So for simplicity we
tacitly assume that a mapping between free monoids is an
alphabetic language homomorphism if nothing contrary is
stated.

To describe a two-sided cooperation, let Σ=Φ ·∪ Γ where
Φ is the set of actions of cooperation partner F and Γ is
the set of actions of cooperation partner G. Now a prefix
closed language L⊂ (Φ ·∪ Γ)∗ formally defines a two-sided
cooperation.

Example 1. Let Φ = {fs, fr} and Γ = {gs,gr} and hence
Σ = {fs, fr,gs,gr}. An example for a cooperation L ⊂ Σ∗ is
now given by the automaton in Fig. 1(a). It describes a
simple handshake between F and G.

Please note that in the following we will denote initial
states by a short incoming arrow and final states by double
circles. In this automaton all states are final states, since L
is prefix closed.

fs gr

gsfr

(a) 1-1-cooperation L

fs12

gr12

gs12

fr12

fs11gr11

gs11 fr11

(b) 1-2-cooperation L{1}{1,2}

Figure 1. Automata for a simple parameterised cooperation

For parameter sets I, K and (i,k) ∈ I×K let Σik denote
pairwise disjoint copies of Σ. The elements of Σik are
denoted by aik and ΣIK :=

⋃̇
(i,k)∈I×K

Σik. The index ik describes

the bijection a↔ aik for a∈ Σ and aik ∈ Σik. Now LIK ⊂ Σ∗IK
(prefix-closed) describes a parameterised system. To avoid
pathological cases we generally assume parameter and index
sets to be non empty.

For a cooperation between one partner of type F with
two partners of type G in Example 1 let Φ{1}{1,2} =
{fs11, fr11, fs12, fr12}, Γ{1}{1,2} = {gs11,gr11,gs12, gr12} and
Σ{1}{1,2} = Φ{1}{1,2} ·∪ Γ{1}{1,2}. A 1-2-cooperation, where
each pair of partners cooperates restricted by L and each
partner has to finish the handshake it just is involved in
before entering a new one, is now given (by reachability
analysis) by the automaton in Fig. 1(b) for L{1}{1,2}. Fig. 2
in contrast depicts an automaton for a 2-1-cooperation
L{1,2}{1} with the same overall number of partners involved
but two of type F and one partner of type G. A 3-3-
cooperation with the same simple behaviour of partners
already requires an automaton with 916 states and 3168 state
transitions.

For (i,k) ∈ I×K, let π IK
ik : Σ∗IK → Σ∗ with

π IK
ik (ars) =

{
a | ars ∈ Σik
ε | ars ∈ ΣIK \Σik

.

2

f s11

f s21

f r21

f r11

f r11 f r21

gs11

f r21
gs21

f r11

f r21 gr11

f r11

gr21

f s11

f s21

gs21

gs11

f s11

gs21

f s21

gs11
gr21

gr11

gr21

f s11

gr11

f s21

Figure 2. Automaton for the 2-1-cooperation L{1,2}{1}

For uniformly parameterised systems LIK we generally
want to have

LIK ⊂
⋂

(i,k)∈I×K

((π IK
ik)−1(L))

because from an abstracting point of view, where only the
actions of a specific Σik are considered, the complex system
LIK is restricted by L.

In addition to this inclusion LIK is defined by local
schedules that determine how each “version of a partner”
can participate in “different cooperations”. More precisely,
let SF ⊂ Φ∗, SG ⊂ Γ∗ be prefix closed. For (i,k) ∈ I ×
K, let ϕ IK

i : Σ∗IK →Φ∗ and γ IK
k : Σ∗IK → Γ∗ with

ϕ IK
i (ars) =

{
a | ars ∈Φ{i}K
ε | ars ∈ ΣIK \Φ{i}K

and

γ IK
k (ars) =

{
a | ars ∈ ΓI{k}
ε | ars ∈ ΣIK \ΓI{k}

,

where ΦIK and ΓIK are defined correspondingly to ΣIK .

Definition 1 (Uniformly parameterised cooperation LIK).
Let I, K be finite parameter sets, then

LIK :=
⋂

(i,k)∈I×K

(π IK
ik)−1(L) ∩

∩
⋂

i∈I

(ϕ IK
i)−1(SF)∩

⋂

k∈K

(γ IK
k)−1(SG)

By this definition

L{1}{1} = (π{1}{1}11)−1(L) ∩
∩ (ϕ{1}{1}1)−1(SF)∩ (γ{1}{1}1)−1(SG).

As we want L{1}{1} being isomorphic to L by the isomor-
phism π{1}{1}11 : Σ∗{1}{1}→ Σ∗ we additionally need

(π{1}{1}11)−1(L)⊂ (ϕ{1}{1}1)−1(SF) and

(π{1}{1}11)−1(L)⊂ (γ{1}{1}1)−1(SG).

This is equivalent to πΦ(L) ⊂ SF and πΓ(L) ⊂ SG, where
πΦ : Σ∗→Φ∗ and πΓ : Σ∗→ Γ∗ are defined by

πΦ(a) =
{

a | a ∈Φ
ε | a ∈ Γ and πΓ(a) =

{
a | a ∈ Γ
ε | a ∈Φ .

So we complete Def. 1 by the additional conditions

πΦ(L)⊂ SF and πΓ(L)⊂ SG.

Schedules SF and SG that fit to the cooperations given
in Example 1 are depicted in Figs. 3(a) and 3(b). Here we
have πΦ(L) = SF and πΓ(L) = SG.

fs

fr

(a) Schedule SF

gr

gs

(b) Schedule SG

Figure 3. Automata SF and SG for the schedules SF and SG

The system LIK of cooperations is a typical example of a
complex system. It consists of several identical components
(copies of the two-sided cooperation L), which “interact” in
a uniform manner (described by the schedules SF and SG
and by the homomorphisms ϕ IK

i and γ IK
k).

Remark 1. It is easy to see that LIK is isomorphic to LI′K′

if I is isomorphic to I′ and K is isomorphic to K′. More
precisely, let ι I

I′ : I→ I′ and ιK
K′ : K→ K′ be bijections and

let ι IK
I′K′ : Σ∗IK → Σ∗I′K′ be defined by

ι IK
I′K′(aik) := aι I

I′ (i)ι
K
K′ (k)

for aik ∈ ΣIK .

Then ι IK
I′K′ is a isomorphism and ι IK

I′K′(LIK) = LI′K′ . The
set of all these isomorphisms ι IK

I′K′ defined by corresponding
bijections ι I

I′ and ιK
K′ is denoted by I IK

I′K′ .

IV. SELF-SIMILARITY

By self-similary we want to formalise that for I′ ⊂ I and
K′ ⊂ K from an abstracting point of view, where only the
actions of ΣI′K′ are considered, the complex system LIK
behaves like the smaller subsystem LI′K′ . Therefore we now
consider special abstractions on LIK .

Definition 2 (Projection abstraction).
For I′ ⊂ I and K′ ⊂ K let ΠIK

I′K′ : Σ∗IK → Σ∗I′K′ with

ΠIK
I′K′(ars) =

{
ars | ars ∈ ΣI′K′

ε | ars ∈ ΣIK \ΣI′K′ .

It is easy to see [10]:

Theorem 1. LIK ⊃LI′K′ for I′×K′ ⊂ I×K, and therefore

ΠIK
I′K′(LIK)⊃ΠIK

I′K′(LI′K′) = LI′K′ .

3

The reverse inclusions

ΠIK
I′K′(LIK)⊂LI′K′ for all I′×K′ ⊂ I×K (1)

do not hold in general, which is shown by the following
example.

Example 2. For a counterexample let us examine the 1-
1-cooperation given by the automaton in Fig. 4(a). Let the
schedule SF again be given by the automaton SF in Fig. 3(a)
and the schedule SG be given by the automaton SG in
Fig. 4(b).

fs

fr

gr

gi

gs

(a) 1-1-cooperation L

1

2 3

4 5 6

7

9 8
gr

gi

gs

grgs

gr gi

gi

gs

gsgs

(b) Schedule SG

Figure 4. Automata for the counterexample

In the automaton SG immediately after entering a second
handshake (state 4) G may enter a third handshake but
immediately after entering the first handshake (state 2) G
may not enter a second handshake. We now get for example

fs11fs21fs31gr11gi11gr21gr31 ∈L{1,2,3}{1}.

Hence

fs21fs31gr21gr31 ∈Π{1,2,3}{1}{2,3}{1} (L{1,2,3}{1}), but

fs21fs31gr21gr31 /∈L{2,3}{1}.

In the general case we do not know the decidability status
of (1), but for many parameterised systems (1) holds, and
therefore

ΠIK
I′K′(LIK) = LI′K′ ,

which is a generalisation of π IK
ik (LIK) = L.

Definition 3 (Self-similarity).
A uniformly parameterised cooperation LIK is called self-
similar iff

ΠIK
I′K′(LIK) = LI′K′ for each I′×K′ ⊂ I×K.

So we are looking for conditions, which imply (1).
Fig. 4(b) is typical in the sense that it may serve as
an idea to get a sufficient condition for self-similarity. It
requires (a) two separate conditions, one for each schedule,
(b) structuring schedules into phases, which may be shuffled
in a restricted manner, (c) formalising “how a cooperation
partner is involved in several phases”, (d) the more phases
a cooperation partner is involved in, the less possibilities of
acting in each phase he has. In [10] a sufficient condition
for self-similarity is given, which is based on deterministic

computations in shuffle automata. Under certain regular-
ity restrictions this condition can be verified by a semi-
algorithm.

V. UNIFORMLY PARAMETERISED SECURITY PROPERTIES

We will now give an example that demonstrates the
significance of self-similarity for verification purposes and
then present a generic verification scheme for uniformly
parameterised security properties.

Example 3. We consider a system of servers, each of them
managing a resource, and clients, which want to use these
resources. We assume that as a means to enforce a given
privacy policy a server has to manage its resource in such
a way that no client may access this resource during it is
in use by another client (privacy requirement). This may be
required to ensure anonymity in such a way that clients and
their actions on a resource cannot be linked by an observer.

We formalise this system at an abstract level, where a
client may perform the actions fx (send a request), fy (receive
a permission) and fz (send a free-message), and a server may
perform the corresponding actions gx (receive a request), gy
(send a permission) and gz (receive a free-message). The
possible sequences of actions of a client resp. of a server
are given by the automaton SF resp. SG. The automaton L
describes the 1-1-cooperation of one client and one server
(see Fig. 5). These automata define the client-server system
LIK .

1

2

6

3

5

47 8

fx

gx

gy

fy

fz

fxgz

gx

gz gz

(a) 1-1-cooperation L

1

2 3

fx

fy

fz

(b) Schedule SF

1

2 3

4

gx

gy

gz

gxgz

(c) Schedule SG

1

2

fy11fz11

fy21

(d) ν121(L{1,2}{1})

1

2 3

4

gx

gy

gz

gx

gz

gx

(e) Schedule SG′

Figure 5. Automata L, SF, SG, ν121(L{1,2}{1}) and SG′ for Example 3

Considering fy as the begin-action and fz as the end-action
w.r.t. accessing a resource, the privacy requirement can be
formalised by (2).

4

Let i, i′ ∈ I, i 6= i′, k ∈ K and
µ IK

ii′k : Σ∗IK →{fyik, fzik, fyi′k}∗ with

µ IK
ii′k(ars) :=

{
ars | ars ∈ {fyik, fzik, fyi′k}

ε | ars ∈ ΣIK \{fyik, fzik, fyi′k}.
For each i, i′ ∈ I, i 6= i′ and k ∈ K

µ IK
ii′k(LIK)∩Σ∗{i,i′}{k}fyikfyi′k = /0. (2)

For i, i′ ∈ I, i 6= i′, k ∈ K let
νii′k : Σ∗{i,i′}{k}→{fyik, fzik, fyi′k}∗ be defined by

νii′k(ars) :=
{

ars | ars ∈ {fyik, fzik, fyi′k}
ε | ars ∈ Σ{i,i′}{k} \{fyik, fzik, fyi′k},

then
µ IK

ii′k = νii′k ◦ΠIK
{i,i′}{k}.

Hence,

µ IK
ii′k(LIK) = νii′k(L{i,i′}{k}) if LIK is self-similar.

Let ιii′k : Σ∗{i,i′}{k}→ Σ∗{1,2}{1} be the isomorphism defined by

ιii′k(aik) :=
{

a11 | aik ∈ Σik
a21 | ai′k ∈ Σi′k,

then by Remark 1

ιii′k(L{i,i′}{k}) = L{1,2}{1},

since νii′k = ι−1
ii′k ◦ν121 ◦ ιii′k, LIK fulfills the privacy require-

ment (2) for each index set I and K iff

ν121(L{1,2}{1})∩Σ∗{1,2}{1}fy11fy21 = /0. (3)

This can be verified by checking the finite automaton of
L{1,2}{1}. The automaton of L{1,2}{1} consists of 28 states.
The minimal automaton of ν121(L{1,2}{1}) is shown in
Fig. 5(d) which implies (3). Self-similarity of LIK can be
shown using the methods given in [10]. So LIK fulfills the
privacy requirement.

On the contrary, L ′
IK defined by SF, SG′ and L of Fig. 5

is not self-similar because of

fx11fx21fx31gx11gy11gx21gx31gy21fy11fy21 ∈L ′
{1,2,3}{1},

fx11fx21gx11gy11gx21gy21fy11fy21∈Π{1,2,3}{1}{1,2}{1} (L ′
{1,2,3}{1})

but fx11fx21gx11gy11gx21gy21fy11fy21 /∈L ′
{1,2}{1}.

The same action sequence shows that L ′
IK does not fulfill

the privacy requirement.
The privacy requirement of the example is a typical

safety property [14]. These properties describe that “nothing
forbidden happens”. They can be formalised by a set F
of forbidden action sequences. So a system LIK ⊂ Σ∗IK
satisfies a safety property FIK ⊂ Σ∗IK iff LIK ∩FIK = /0.
More precisely, these are safety properties which can be
expressed without “dummy actions” to descibe deadlocks.

In our example the privacy requirement is formalised by

FIK =
⋃

i,i′∈I,i6=i′,k∈K

(µ IK
ii′k)
−1(Σ∗{i,i′}{k}fyikfyi′k) =

=
⋃

i,i′∈I,i6=i′,k∈K

(ΠIK
{i,i′}{k})

−1(ι−1
ii′k [ν

−1
121(Σ

∗
{1,2}{1}fy11fy21)])

because of

µ IK
ii′k = ι−1

ii′k ◦ν121 ◦ ιii′k ◦ΠIK
{i,i′}{k} and

ιii′k(Σ∗{i,i′}{k}fyikfyi′k) = Σ∗{1,2}{1}fy11fy21.

As

ν−1
121(Σ

∗
{1,2}{1}fy11fy21)⊂ Σ∗{1,2}{1} and ι−1

ii′k ∈I
{1,2}{1}
{i,i′}{k} ,

we now generally consider safety properties formalised by

F F̊
IK =

⋃

I′⊂I,K′⊂K,ι I̊K̊
I′K′∈I

I̊K̊
I′K′

(ΠIK
I′K′)

−1(ι I̊K̊
I′K′(F̊)) and

generated by F̊ ⊂ Σ∗
I̊K̊

.
For the privacy requirement above

F̊ = ν−1
121(Σ

∗
{1,2}{1}fy11fy21), I̊ = {1,2}, K̊ = {1}.

By this definition

F F̊
IK = /0 for |I|< |I̊| or |K|< |K̊|, (4)

as in that case I I̊K̊
I′K′ = /0 for each I′ ⊂ I and K′ ⊂ K.

Now by the same argument as in our privacy example,
we get

Theorem 2. Self-similarity of LIK implies that for a fixed
F̊ ⊂ Σ∗

I̊K̊
holds

LIK ∩F F̊
IK = /0 for each index sets I and K

iff for the fixed index sets I̊ and K̊ LI̊K̊ ∩ F̊ = /0.

If LI̊K̊ and F̊ are regular subsets of Σ∗
I̊K̊

this can be
checked by finite state methods [15]. On account of (4) it
makes sense to consider safety properties defined by

FIK :=
⋃

t∈T

F F̊t
IK with finite T and F̊t ⊂ Σ∗I̊t K̊t

(5)

for each t ∈ T .

Definition 4 (Uniformly parameterised safety properties).
Safety properties of the form (5) we call uniformly parame-
terised.

Corollary 1. For self-similar LIK the parameterised prob-
lem of verifying a uniformly parameterised safety property
is reduced to finite many fixed finite state problems if the
corresponding LI̊t K̊t

and F̊t are regular languages.

Example 3 can also be seen as a dependability example
when we assume that the managed resource is a rail track,
the clients are trains and the policy to ensure integrity and

5

safety of the system demands that only one train is allowed
to use the rail track at a time. We can also derive an
authentication example when we assume the client to be an
ATM with fx (authenticate credit card), fy (draw-out cash)
and fz (eject credit card) and the server actions respectively
manage a bank account. Please note that a stronger property
“no further authentication before the card is ejected” does
not hold for that specification.

VI. CONCLUSIONS AND FUTURE WORK

The main result of this paper is to demonstrate the signifi-
cance of self-similarity for verification of security properties.
We assume that uniformly parameterised structures like the
uniformly parameterised cooperations we have defined and
used here are likely to appear in any highly scalable system
or system of systems such as cloud computing platforms or
vehicular communication systems.

It is well known that dynamic system properties such as
dependability and security properties are divided into safety
and liveness properties [14]. Safety properties can be for-
malised by formal languages as demonstrated in section V.
We have shown here in particular that for self-similar LIK
the parameterised problem of verifying a uniformly param-
eterised safety property can be reduced to finite many fixed
finite state problems under certain regularity restrictions. For
abstractions defined by alphabetic language homomorphisms
it is easy to see that an abstract system satisfies a safety
property as considered in Sect. V iff the concrete system
satisfies a corresponding safety property. So our notion of
self-similarity is compatible with uniformly parameterised
safety properties.

Concerning liveness properties (“Eventually something
desired happens.”) such a relation between abstract and
concrete systems does not hold in general. In [16] a property
of homomorphisms is given that implies a similar relation
between liveness properties of an abstract and a concrete
system w.r.t. a modified satisfaction relation (“Eventually
something desired is possible.”). Based on that framework
we will investigate liveness aspects of uniformly parame-
terised cooperations as well as safety properties related to
deadlocks in a forthcoming paper. Another topic of interest
is the generalisation of this method to n-sided cooperations.

ACKNOWLEDGEMENT

Roland Rieke developed the work presented here in the
context of the project MASSIF (ID 257475) being co-funded
by the European Commission within FP7.

REFERENCES

[1] A. Fuchs and R. Rieke, “Identification of Authenticity Re-
quirements in Systems of Systems by Functional Security
Analysis,” in Workshop on Architecting Dependable Systems
(WADS 2009), in Proceedings of the 2009 IEEE/IFIP Confer-
ence on Dependable Systems and Networks, Supplementary
Volume, 2009.

[2] C. N. Ip and D. L. Dill, “Verifying Systems with Replicated
Components in Murϕ ,” Formal Methods in System Design,
vol. 14, no. 3, pp. 273–310, 1999.

[3] F. Derepas and P. Gastin, “Model checking systems of
replicated processes with SPIN,” in Proceedings of the 8th
International SPIN Workshop on Model Checking Software
(SPIN’01), ser. Lecture Notes in Computer Science, M. B.
Dwyer, Ed., vol. 2057. Toronto, Canada: Springer, May
2001, pp. 235–251.

[4] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre, “Incre-
mental Verification by Abstraction.” in TACAS, ser. Lecture
Notes in Computer Science, T. Margaria and W. Yi, Eds., vol.
2031. Springer, 2001, pp. 98–112.

[5] S. Basu and C. R. Ramakrishnan, “Compositional analysis for
verification of parameterized systems,” Theor. Comput. Sci.,
vol. 354, no. 2, pp. 211–229, 2006.

[6] R. Milner, Communication and Concurrency, ser. Interna-
tional Series in Computer Science. NY: Prentice Hall, 1989.

[7] J. Bradfield and C. Stirling, “Modal logics and mu-calculi:
an introduction,” 2001. [Online]. Available: citeseer.ist.psu.
edu/bradfield01modal.html

[8] P. Ochsenschläger and R. Rieke, “Abstraction Based Veri-
fication of a Parameterised Policy Controlled System,” in
International Conference ”Mathematical Methods, Models
and Architectures for Computer Networks Security” (MMM-
ACNS-7), ser. CCIS, vol. 1. Springer, September 2007.

[9] T. E. Uribe, “Combinations of Model Checking and The-
orem Proving,” in FroCoS ’00: Proceedings of the Third
International Workshop on Frontiers of Combining Systems.
London, UK: Springer-Verlag, 2000, pp. 151–170.

[10] P. Ochsenschläger and R. Rieke, “Uniform Parameterisation
of Phase Based Cooperations,” Fraunhofer SIT, Tech.
Rep. SIT-TR-2010/1, 2010. [Online]. Available: http://sit.sit.
fraunhofer.de/smv/publications

[11] M. Jantzen, “Extending Regular Expressions with Iterated
Shuffle,” Theor. Comput. Sci., vol. 38, pp. 223–247, 1985.

[12] J. Jedrzejowicz and A. Szepietowski, “Shuffle languages are
in P,” Theor. Comput. Sci., vol. 250, no. 1-2, pp. 31–53, 2001.

[13] H. Björklund and M. Bojanczyk, “Shuffle Expressions and
Words with Nested Data,” in Mathematical Foundations of
Computer Science 2007, 2007, pp. 750–761.

[14] B. Alpern and F. B. Schneider, “Defining liveness,” Informa-
tion Processing Letters, vol. 21, no. 4, pp. 181–185, October
1985.

[15] J. Sakarovitch, Elements of Automata Theory. Cambridge
University Press, 2009.

[16] U. Nitsche and P. Ochsenschläger, “Approximately satisfied
properties of systems and simple language homomorphisms,”
Information Processing Letters, vol. 60, pp. 201–206, 1996.

6

