
c©1998 Springer-Verlag. This is an author-created version of the work with DOI:
10.1007/s001650050023. The original publication is available at www.springerlink.com.
http://link.springer.com/article/10.1007%2Fs001650050023

Formal Aspects of Computing (1998) 3: 1–000
c© 1998 BCS

The SH-Verification Tool —
Abstraction-Based Verification of
Co-operating Systems

P. Ochsenschlägera, J. Reppa, R. Riekea and U. Nitscheb

a GMD — German National Research Centre for Computer Science, Institute for
Telecooperation Technology, Rheinstr. 75, D-64295 Darmstadt, Germany
email: {ochsenschlaeger,repp,rieke}@darmstadt.gmd.de
b Department of Electronics and Computer Science, University of Southampton,
Highfield, Southampton, SO17 1BJ, U.K.
email: un@ecs.soton.ac.uk

Keywords: Simple language homomorphisms; Asynchronous product automata;
Approximate satisfaction of safety and liveness properties; Model checking; Ver-
ification tools

Abstract. The sh-verification tool comprises computing abstractions of finite-
state behaviour representations as well as automata and temporal logic based ver-
ification approaches. To be suitable for the verification of so called co-operating
systems, a modified type of satisfaction relation (approximate satisfaction) is con-
sidered. Regarding abstraction, alphabetic language homomorphisms are used to
compute abstract behaviours. To avoid loss of important information when mov-
ing to the abstract level, abstracting homomorphisms have to satisfy a certain
property called simplicity on the concrete (i.e. not abstracted) behaviour. The
well known state space explosion problem is tackled by a compositional method
combined with a partial order method.

1. Introduction

The aim of the sh-verification tool (sh means simple homomorphisms, which will
be explained below) is to support the verification of co-operating systems. By

Correspondence and offprint requests to: Peter Ochsenschläger, GMD — German National
Research Centre for Computer Science, Institute for Telecooperation Technology, Rheinstr. 75,
D-64295 Darmstadt, Germany email: ochsenschlaeger@darmstadt.gmd.de and
Ulrich Nitsche, Department of Electronics and Computer Science, University of Southampton,
Highfield, Southampton, SO17 1BJ, U.K., email: un@ecs.soton.ac.uk

http://link.springer.com/article/10.1007%2Fs001650050023

2 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

co-operating systems we mean distributed systems which are characterized by
freedom of decision and loose coupling of their components. This causes a high
degree of nondeterminism which is handled by our methods. Typical examples
of co-operating systems are telephone systems, communication protocols, smart-
card systems, electronic money, contract systems, etc.

In that context verification is the proof that system components work together in
a desired manner. So the dynamic behaviour of the system has to be investigated.
One usual approach is to start with a formal specification of the dynamic be-
haviour of the system which is represented by a labelled transition system (LTS),
and then to prove properties of such an LTS. But for real life applications the
corresponding LTS are often too complex to apply this naive approach.

In contrast to the immense number of transitions of such an LTS usually only a
few characteristic actions of the system are of interest with respect to verifica-
tion. So it is evident to define abstractions with respect to the actions of interest
and to compute a representation of such an abstract behaviour, which usually is
much smaller than the LTS of the specification. For such a small representation
dynamic properties can be proven more efficiently. Now, under certain condi-
tions, properties of the system specification can be deduced from properties of
the abstract behaviour.

For such an approach the following questions have to be answered:

Question 1: What does it formally mean, that a system satisfies a property
(especially in the context of co-operating systems)?

Question 2: How can we formally define abstractions?

Question 3: For what kind of abstractions is there a sufficiently strong re-
lation between system properties and properties of the abstract
behaviour?

Question 4: How can we compute a representation of the abstract behaviour
efficiently?

The present article is an extended and completed version of [ORRN97].

2. Approximately Satisfied Properties

As a small but typical example to illustrate our answers to these questions, we
consider a system that consists of a client and a server as its main components.
The client sends requests to the server, expecting the server to produce particular
results. Nevertheless, for some reasons, the server may not always respond a
request by sending a result, but may, as well, reject a request. The main actions
that are important with respect to the client’s behaviour, are sending a request
and receiving a result or rejection. These actions are depicted as REQ, RES,
and REJ in Figure 1. We will regard the whole system running properly, if the
client, at no time, is prohibited completely from receiving a result after having
sent a request.
For the moment, we regard the server as a black box; i.e. we neither consider its
internal structure nor look at its internal actions. Not caring about particular ac-
tions of a specification when regarding the specification’s behaviour is behaviour

The SH-Verification Tool 3

Server

Client

REJRESREQ

Fig. 1. Client Server Example

abstraction. If we define a suitable abstraction for the client/server system with
respect to our correctness criterion, we only keep actions REQ, RES, and REJ
visible, hiding all other actions.

To formalise behaviour abstraction we use terms of formal language theory. An
LTS is completely determined by the set of its paths starting at the initial state.
This set is a formal language, called the local language of the LTS [Eil74]. Its
letters are the transitions (state, transition label, successor-state) of the LTS.
Σ denotes the set of all transitions of the LTS. Consequently, there is a one-
to-one correspondence between the LTS and its local language L ⊂ Σ∗ , where
Σ∗ is the set of all sequences of elements of Σ including the empty sequence
ǫ. Now behaviour abstraction can be formalized by language homomorphisms,
more precisely by alphabetic language homomorphisms h : Σ∗ → Σ′∗ (answer
to question 2). By these homomorphisms certain transitions are ignored and
others are renamed, which may have the effect, that different transitions are
identified with one another. A mapping h : Σ∗ → Σ′∗ is called a language ho-
momorphism if h(ǫ) = ǫ and h(yz) = h(y)h(z) for each y, z ∈ Σ∗. It is called
alphabetic, if h(Σ) ⊂ Σ′ ∪ {ǫ}.

An automaton representation (minimal automaton [Eil74]) for the abstract be-
haviour of a specification (homomorphic image of the LTS’s local language) can
be computed by the sh-verification tool. Applying the abstraction described
above to the concrete (i.e. not abstracted) behaviour of a specification of the
client/server system leads to an automaton representation of abstract behaviour
as presented in Figure 2. For this example Σ′ = {REQ,RES,REJ} .

A-2
A-1
start:

(REJ)

(RES)

(REQ)

Fig. 2. Minimal Automaton.

The abstract behaviour obviously satisfies the correctness requirement mentioned

4 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

above that, at no time, the client can be prohibited from receiving a result to
a request. The usual concept of linear satisfaction of properties [AS85] (each
infinite run of the system satisfies the property) is not suitable in this context
since it considers also the extreme executions like “a request is always rejected”.
Obviously, the problem occurs because no fairness constraints are considered. We
put a very abstract notion of fairness into the satisfaction relation for properties,
which considers that “independent of a finitely long computation of the system,
it is always possible that a request is responded by result”. To formalise such
“possibility properties”, which are of interest when considering what we call co-
operating systems, the notion of approximate satisfaction of properties is defined
in [NO96] (answer to question 1):

Definition 2.1. An automaton approximately satisfies a property if and only if
each finite path of transitions of the automaton can be continued to an infinite
path, which satisfies the property.

As it is well known [AS85], system properties are divided into two types: safety
(what happens is not wrong) and liveness properties (eventually something de-
sired happens). For safety properties linear satisfaction and approximate sat-
isfaction are equivalent [NO96]. Approximately satisfied liveness properties are
liveness properties with respect to the universe of a system’s behaviour. They
are related to linear satisfaction of properties under strong fairness constraints
for the sake of adding behaviour invariant state information [NW97].

3. Simple Homomorphisms as an Abstraction Concept

It is now the question of main interest, whether, by investigating an abstract
behaviour, we may verify the correctness of the underlying concrete behaviour.
We will answer this question positively, requiring a restriction of the permit-
ted abstraction techniques. To deduce approximately satisfied properties of a
specification from properties of its abstract behaviour an additional property of
abstractions is required: called simplicity of homomorphisms on a specification
[Och92, Och94b]. Simplicity of homomorphisms on specifications is a very tech-
nical condition concerning the possible continuations of finite behaviours.

Concerning abstractions h : Σ∗ → Σ′∗ the crucial point are the liveness prop-
erties of a Language L ⊂ Σ∗ . To define simplicity formally we need w−1(L) =
{y ∈ Σ∗|wy ∈ L} , the set of continuations of a word w in a language L [Eil74].
These continuations in some sense “represent” the liveness properties of L. Gen-
erally h(x−1(L)) is a (proper) subset of h(x)−1(h(L)) , but we want to have that
h(x−1(L)) “eventually” equals h(x)−1(h(L)) .

Definition 3.1. A homomorphism h is called simple on L, if for each x ∈ L
there exists w ∈ h(x)−1(h(L)) such that w−1(h(x−1(L))) = (h(x)w)−1(h(L)) .

For regular languages simplicity of a homomorphism is a decidable property.
Necessary and sufficient conditions for a homomorphism to be simple exist on
the state graph level which are practically motivated and can be checked very
efficiently. We will discuss this in more detail subsequently. The following theo-
rem [NO96] shows that approximate satisfaction of properties and simplicity of
homomorphisms exactly fit together for verifying co-operating systems (answer
to question 3):

The SH-Verification Tool 5

Theorem 3.2. Simple homomorphisms define exactly the class of such Abstrac-
tions, for which holds that each property is approximately satisfied by the abstract
behaviour if and only if the “corresponding“ property is approximately satisfied
by the concrete behaviour of the system.

Formally, the “corresponding“ property is expressed by the inverse image of the
abstract property with respect to the homomorphism.

Our verification method, which is based on the very general notions of approx-
imate satisfaction of properties and simple language homomorphisms, does not
depend on a specific formal specification method. It can be applied to all speci-
fication techniques with an LTS-semantics.

To point out and motivate in more detail the necessity of considering approxi-
mate satisfaction of properties and of restricting suitable abstraction techniques
to simple homomorphisms, we have to look more closely at the structure the
server may have.

The server’s answer (result or rejection) to a client’s request may depend on
whether a resource is available. If the resource is free, the server will respond a
request by sending a result, if the resource is locked when the server is requested,
the server will reject the request. Assuming that the server cannot control the
resource, there is no guarantee at all that the resource is not locked all the time
the client sends a request. Therefore, for some quite extreme computation sce-
narios, a request may always be rejected. So the best we can expect is that, in
principle, there is always the possibility that a request is answered by eventually
producing a result. This type of requirements is exactly captured by the defini-
tion of approximate satisfaction of properties. We revisit the correctness criterion
for the client/server specification: the client is never prohibited completely from
receiving a result after having sent a request.

If the resource behaves properly, i.e. it would change infinitely often from state
locked to state free and vice versa in an infinite amount of time, the client/server
specification will be correct with respect to the above requirement. Hence, since
Figure 2 represents the abstract behaviour of the specification, the abstract as
well as the concrete behaviour meet the correctness requirement. One may con-
jecture that the satisfaction of correctness criteria is preserved when moving from
the abstract to the concrete behaviour.

Let us now consider a resource not showing a proper behaviour. A formal speci-
fication in terms of Petri nets is given in Section 7. For some reason, the resource
may eventually be locked forever. Indeed, we consider now a resource that con-
tains an error. If the resource vanishes forever, the client will never receive a
result again. Thus this modified client/server specification does not meet the
correctness requirement anymore. Regarding that the modified system may be-
have correct as well as after some time may behave incorrect, when coming to
abstraction, the correct behaviour hides the incorrect one. This is, because the
incorrect behaviour is a subset of the correct one, and therefore, when brought to-
gether by looking only at actions REQ, RES, and REJ , the abstract behaviour
of the system is still represented in Figure 2. Here, the considered correctness
requirement is not preserved when changing the viewpoint from the abstract to

6 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

the concrete behaviour.

The problem of a correct subbehaviour hiding an incorrect subbehaviour under
abstraction can be most easily explained when looking at the strongly connected
components of the LTS that represents the concrete behaviour. For the incorrect
client/server specification, Figure 3 shows the LTS representing the behaviour
of the client/server specification such that the strongly connected components
of the LTS are differently marked. When drawing our attention to abstraction,
the strongly connected component that contains the initial state corresponds to
a correct abstract subbehaviour of the specification. The second strongly con-
nected component, which is a bottom component (no outgoing transitions from
this component), corresponds to an incorrect abstract subbehaviour. When com-
puting the minimal representation for the abstract behaviour (it is naturally the
minimal representation of the abstract behaviour that we are interested in the
abstraction framework), the two strongly connected components are “shuffled“
in such a way that the resulting LTS shows the maximal possible behaviour with
respect to the shuffling. Hence the first component covers the second one and
the incorrect behaviour is hidden.

T_3

T_3

T_2

T_2

T_2

T_2

REJ

T_3

T_3

RES

 S_1 S_3

 S_1 S_4

 S_1 S_5

 S_1 S_6

 S_2 S_3

 S_2 S_4

 S_2 S_5

S_2 S_6
 start:

 S_3

 S_4

 S_5

 S_6

VANISH

T_4

REQ

VANISH

VANISH T_4

REJ

T_7

T_4

REJ

REQ
T_7 REQ

VANISH

T_7

Fig. 3. LTS

In the considered example, the so far discussed problem can be detected easily
when computing a graph representation of the strongly connected components
of the concrete LTS, called the component graph. Each node in this graph repre-
sentation is a strongly connected component and we have an arc from one node
to another, if there exists a transition to move from one strongly connected com-
ponent to the other. We label these nodes with abstract actions that can occur
in the corresponding strongly connected components with respect to the defined
abstraction.

The component graph of an LTS can be computed by the sh-verification tool
and Figure 4 shows this graph representation for our example. Realizing that

The SH-Verification Tool 7

in the second node, which is a leaf because it represents a strongly connected
bottom component, the action RES is missing compared to the first node. We
obtain that in the strongly connected bottom component a request cannot be
answered with a result anymore, which reveals exactly the violation of the re-
quirement that we considered. There are reachable states wherefrom REQ can
never be responded with RES.

(REQ)
(REJ)
A-2

(REQ)
(RES)
(REJ)
A-1
start:

(VANISH)

Fig. 4. Connected Components

It is rather obvious that we can only be interested in abstractions where hiding
of an incorrect subbehaviour by a correct one cannot occur. For this purpose,
simplicity of homomorphisms on behaviours has been defined. And, indeed, sim-
plicity of homomorphisms is a necessary and sufficient condition for the preserva-
tion of approximately satisfied properties when changing the point of view from
the abstract to the concrete behaviour.

Inspecting the strongly connected components of an LTS simplicity of an abstrac-
tion can be investigated. In [Och92, Och94b] the following sufficient condition
for simplicity has been proven:

Theorem 3.3. Let L be a Language recognized by a finite automaton A and let
h be a homomorphism on L. If for each x ∈ L there exists y ∈ x−1(L) leading
to a dead component of A , such that each z ∈ L with h(z) = h(xy) leads to
the same dead component, then h is simple on L. This condition is satisfied for
example, if each dead component contains a label a of an edge with h(a) 6= ǫ, such
that no edge exists outside of this component, whose label has the same image
h(a). If A is strongly connected, then each homomorphism is simple on L.

To prove non-simplicity a necessary condition for simplicity is needed.
If h(x−1(L)) = {ǫ} for a homomorphism h : Σ∗ → Σ′∗, L ⊂ Σ∗ and x ∈ L then h
is simple on L in x only if h(x)−1(h(L)) = {ǫ}. In earlier papers [Och88, Och90,
Och91b] this situation has been formalized by so called deadlock languages.
They consider abstract behaviours leading to states where no visible (under the
abstraction) continuations exist.

Definition 3.4. The deadlock language DL of a language L with respect to a
homomorphism h is defined by DL = {u ∈ h(L) | there exist x ∈ L with u =
h(x) and h(x−1(L)) = {ǫ}} .

The minimal automaton of the deadlock language is called deadlock automaton.
It can be computed by the sh-verification tool. If in our erroneous example all but
action RES are hidden by a homomorphism t : Σ∗ → Σ′′∗ , with Σ′′ = {RES},
the corresponding deadlock automaton, as well as the minimal automaton of
t(L), is shown in Figure 5. The deadlock automaton of the correct example is
empty.
To formulate a necessary condition for simplicity using deadlock languages the
notion termination language is needed:

8 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

A-1*
start:

(RES)

Fig. 5. Deadlock Automaton

Definition 3.5. The termination language TL of a language L with respect to
a homomorphism h is defined by TL = {u ∈ h(L)|u−1(h(L)) = {ǫ}}.
It is easy to see that generally TL ⊂ DL and that TL = DL if the homomor-
phism h is simple on L [Och92, Och94b].

Concerning the homomorphism t Figure 5 shows that TL = ∅ 6= DL. So t is
not simple on L. To apply the necessary condition for simplicity to our homo-
morphism h : Σ∗ → Σ′∗ with Σ′ = {REQ,RES,REJ} we have to consider
compositions of homomorphisms. Let f : Σ∗

1 → Σ∗
2 and g : Σ∗

2 → Σ∗
3 be map-

pings. The composition g ◦ f : Σ∗
1 → Σ∗

3 is defined by (g ◦ f)(x) = g(f(x)) for
each x ∈ Σ∗

1. If g and f are homomorphisms then g ◦ f is a homomorphism too.
The following theorems express the compatibility of simplicity with composition
of homomorphisms [Och92, Och94b].

Theorem 3.6. If f is simple on L ⊂ Σ∗
1 and g is simple on f(L) ⊂ Σ∗

2 then
g ◦ f is simple on L.

Theorem 3.7. If g ◦ f is simple on L ⊂ Σ∗
1 then g is simple on f(L).

Considering the homomorphism t′ : Σ′∗ → Σ′′∗ , defined by t′(RES) = RES
and t′(X) = ǫ for X 6= RES , we have t = t′ ◦ h . Now t′ is simple on h(L)
because the automaton in Figure 2 is strongly connected. By the above theorem
simplicity of h on L would imply simplicity of t on L, which is not true. So h is
not simple on L, and the defect of our erroneous specification can be detected
by simplicity investigations of appropriate homomorphisms without using the
complex decision algorithm for simplicity.

4. A Compositional Approach to Avoid State Space
Explosion

Simple homomorphisms establish the coarsest, i.e. most abstract notion of system
equivalence with respect to a given (abstract) requirement specification [NO96].
What still remains open is the question of how to construct an abstract behaviour
to a given specification without an exhaustive construction of its state space.

To handle the well known state space explosion problem, a compositional method
has been developed [Och94c, Och95, Och96] and implemented in the sh-verification
tool. In case of well structured specifications, by applying a divide and conquer
strategy this method allows to compute a representation of the abstract be-
haviour and to check simplicity of homomorphisms efficiently without having to
compute the complex LTS of the complete specification (answer to question
4). This compositional method is combined with a partial order method based
on partially commutative languages [Och97]. The main goal of our compositional
method is to compute minimal automata of homomorphic images and to check

The SH-Verification Tool 9

simplicity of homomorphisms efficiently even in case of complex specifications.
The fundamental idea is to embed each component of a structured system (X and
Y in Figure 9) in a “simplified environment“ (Y’ and X’ in Figure 6), which shows
at the interface an “equivalent behaviour“ compared to the rest of the system
(shaded areas in Figure 6). This can be checked using special homomorphisms,
called boundary homomorphisms. The complexity of this check is reduced by our
partial order method.

X

YX’

Y’

Fig. 6.

For each of these smaller systems minimal automata related to corresponding ho-
momorphisms (which have to be finer than the boundary homomorphisms) are
computed (Figure 7) and are composed (Figure 8) to obtain the desired automa-
ton (Figure 9). This kind of composition is defined by the notion of asynchronous
product automata and co-operation products of formal languages, a restricted
kind of shuffle product. Simplicity of homomorphisms on co-operation products
is guaranteed by a particular property of the boundary homomorphisms, which
is called co-operativity For more details we refer to the next chapter and to
[Och94c, Och95, Och96].

YX’ YX

Fig. 7.

Fig. 8.

By that, compact representations of abstractions of system behaviour can be
computed and simplicity of abstractions can be checked without investigating
the complete behaviour of a complex system. In case of “well structured“ spec-
ifications this method causes considerable reductions of the state spaces. The

10 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

X Y

Fig. 9.

smaller systems with “simplified environments” avoid a lot of interleavings of
actions (“state space explosion”), which are not relevant with respect to the
considered abstraction but which are instrumental in the complex dynamics of
the system.

This approach can also be used iteratively and allows induction proofs for systems
with several identical components [Och96]. Using our compositional method a
connection establishment and release protocol has been verified by investigating
automata with about 100 states instead of 100000 states.

5. Asynchronous Product Automata

As a formal basis for our compositional approach as well as a formal specification
language we now define the notion of asynchronous product automata (APA), a
very general class of communicating automata. APA can be regarded as families
of automata (elementary automata), whose sets of states are cartesian products
and whose elementary automata are “glued together” by common components
of these products.

Definition 5.1. An asynchronous product automaton (APA) consists of a family
of sets of state components (Zs)s∈S , a family of elementary automata (Φt,∆t)t∈T
and a neighbourhood relation N : T → ℘(S) (℘(X) denotes the set of all subsets
of X). For each elementary automaton (Φt,∆t)

• Φt is its alphabet and

• ∆t ⊂ Xs∈N(t)(Zs)× Φt ×Xs∈N(t)(Zs) is its set of state transition relation.

To avoid pathological cases we assume S =
⋃

t∈T (N(t)) and N(t) 6= ∅ for all

t ∈ T . The states of an APA are elements of Xs∈S(Zs) with the initial state
q0 = (q0s)s∈S ∈ Xs∈S(Zs). Formally an APA A is defined by a quadruple
A = ((Zs)s∈S , (Φt,∆t)t∈T , N, qo).

“Dynamics” of APA are defined by “occurrences” of elementary automata. An el-
ementary automaton (Φt,∆t) is activated in a state p = (ps)s∈S ∈ Xs∈S(Zs) with
respect to an interpretation i ∈ Φt, if there exists (qs)s∈N(t) ∈ Xs∈N(t)(Zs) with
((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t. An activated elementary automaton (Φt,∆t) may

occur and generates a successor state q = (qr)r∈S ∈ Xs∈S with qr = pr for
r ∈ S \N(t) and ((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t.

In this case (p, (t, i), q) denotes the corresponding occurrence step. The occur-
rence of an elementary automaton changes the state components of its neigh-
bourhood.

The SH-Verification Tool 11

A sequence of the form w = (q1, (t1, i1), q2)(q2, (t2, i2), q3)...(qn, (tn, in), qn+1)
with n ≥ 1 is called an occurrence sequence. If such an occurrence sequence ex-
ist, then we say that qn+1 is reachable from q1. Additionally by definition each
state is reachable from itself. Q (the state space) denotes the set of all states
q ∈ Xs∈S(Zs) reachable from the initial state q0 and Σ denotes the set of all
occurrence steps, whose first component is an element of Q. The set L ⊂ Σ∗

of all occurrence sequences starting with the initial state q0 and containing the
empty sequence ε is called the occurrence language of the corresponding APA. Σ
can also be interpreted as the set of arcs of a directed graph, whose set of nodes
is Q and whose arcs are labeled by pairs (t, i) with t ∈ T and i ∈ Φt. This graph
is called the reachability graph of the corresponding APA. By that occurrence
sequences are paths in the reachability graph and the occurrence language is a
regular language (local language), if the reachability graph is finite. The occur-
rence language as well as the reachability graph is a complete description of the
dynamic behaviour of an APA.

As an example we give an APA specification of our incorrect client/server ex-
ample. It is an APA representation of the Petri net in Figure 12, consisting
of three elementary automata, T = {C, S,R} , and four state components,
S = {CS, IS, SS,RS} . Figure 10 shows the neighbourhood relation N.

CS C RRSIS S

SSCLIENT SERVER

Fig. 10. Client / Server APA

State transitions of the elementary automaton C represent actions of the client.
Correspondingly actions of the server and the resource manager are represented
by state transitions of S and R respectively. CS and SS represent “internal”
states of the client and the server. IS describes the the states of the client and
server’s interface. RS represents both, internal and interface states related to the
resource manager. Formally the APA is defined as follows:

state components:
ZCS = ZSS = {idle, active}, ZIS = {emp, req, res− rej} ,
ZRS = {avail, navail, vanished}

imitial states:
q0CS = q0SS = idle, q0IS = emp, q0RS = avail .

alphabets:
ΦC = {REQ, T7} , ΦS = {RES,REJ, T4} , ΦR = {V ANISH, T2, T3} .

state transition relations:

∆C =

{
((idle, emp), REQ, (active, req)),
((active, res− rej), T7, (idle, emp))

}
⊂ (ZCS × ZIS)×ΦC × (ZCS ×

12 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

ZIS),

∆S =

((idle, req, avail), T4, (active, emp, avail)),
((idle, req, navail), T4, (active, emp, navail)),
((idle, req, vanished), T4, (active, emp, vanished)),
((active, emp, avail), RES, (idle, res− rej, avail)),
((active, emp, avail), REJ, (idle, res− rej, avail)),
((active, emp, navail), REJ, (idle, res− rej, navail)),
((active, emp, vanished), REJ, (idle, res− rej, vanished))

⊂ (ZSS×

ZIS × ZRS)× ΦS × (ZSS × ZIS × ZRS),

∆R = {
(avail, T3, navail),
(navail, T2, avail),
(navail, V ANISH, vanished)

} ⊂ ZRS × ΦR × ZRS .

State components correspond to markings of particular places of the Petri net,
as for example emp ∈ ZIS denotes the empty marking of places S-4 and S-5 in
Figure 12. The alphabets’ elements correspond to the transitions of the Petri
net. As the system is structured into three components given by the three el-
ementary automata each alphabet represents the set of “local” actions of the
corresponding component. Note that APA offer a very flexible concept for struc-
turing specifications: decreasing the number of elementary automata increases
the cardinality of the alphabets.

The reachability graph of our APA example is isomorphic to the LTS in Fig-
ure 3.

APA form a very general class of communicating automata. They are similar to
asynchronous cellular automata introduced in [Zie89] and include different kinds
of “simple” and “higher order” Petri nets as well as communicating automata as
for example SDL [SSR89] or Estelle [BD87]. The above terminology is based on
Petri nets: Elementary automata of APA correspond to transitions, state com-
ponents correspond to places and states correspond to markings of places. By
that the state transition relation is realized by the so called occurrence rule of a
Petri net.

In terms of APA we now formulate our compositional method: A distributed
system is an APA and the dynamical behaviour of the system is described by
the occurrence language of that APA. A component (subsystem, module) of a
system is defined by a subset A ⊂ T . As we often consider the complement
of A (“rest of the system” with respect to A) we use the abbreviation A for
T \ A. To consider states of an APA restricted to a subset Y ⊂ S we define
q|Y = (qs)s∈Y ∈ Xs∈Y (Zs) for a state q = (qs)s∈S ∈ Xs∈S(Zs). Two special ho-
momorphisms MA (module homomorphism) and RA (boundary homomorphism)
on the occurrence language L ⊂ Σ∗ of an APA are used to express the behaviour
of a component A of an APA and its behaviour at the interface to A respectively.

Notation. Let RDA = N(A) ∩ N(A′). A homomorphism MA : Σ∗ → Σ∗
MA

with ΣMA =MA(Σ) is defined by

The SH-Verification Tool 13

MA((p, (t, i), q)) =

(p|N(A), (t, i), q|N(A)), if t ∈ A and
N(t) ∩RDA 6= ∅,

(p|N(A) \RDA, (t, i), q|N(A) \RDA), if t ∈ A and
N(t) ∩RDA = ∅,

ǫ, if t ∈ A.

A homomorphism RA : Σ∗ → Σ∗
RA with ΣRA = RA(Σ) is defined by

RA((p, (t, i), q)) =

{
(p|RDA, q|RDA), if t ∈ A and N(t) ∩RDA 6= ∅,
ǫ, if t ∈ A or N(t) ∩RDA = ∅.

To compare homomorphisms with respect to their “degree of abstraction” we
call a homomorphism φ : Σ∗ → ∆∗ finer than a homomorphism ψ : Σ∗ → Γ∗,
if there exists a homomorphism ν : ∆∗ → Γ∗ with ψ = ν ◦ φ. For this we use
the notation φ〈ψ. In that case the homomorphic image φ(L) contains enough
“information” to determine ψ(L). As homomorphisms are used to describe ab-
stractions we assume that they are alphabetic, i.e. φ(Σ) ⊂ ∆ ∪ {ǫ} for each
homomorphism φ.

Notation. Two homomorphisms “acting” on disjoint components of an APA
can be “combined” obtaining a new homomorphism: Let A ⊂ T and let f : Σ∗ →
Φ∗ as well as g : Σ∗ → Γ∗ be homomorphisms with MA〈f as well as MA〈g, then
the homomorphism f ⊕ g : Σ∗ → (Φ ∪ Γ)∗ is defined by (f ⊕ g)((p, (t, i), q)) =
f((p, (t, i), q)) if t ∈ A and (f ⊕ g)((p, (t, i), q)) = g((p, (t, i), q)) if t ∈ A. f ⊕ g
is called the direct sum of f and g. By the additional assumption Φ ∩ Γ = ∅ the
direct sum of two homomorphisms is finer than both homomorphisms: There
exist homomorphisms (projections) φ : (Φ∪Γ)∗ → Φ and γ : (Φ∪Γ)∗ → Γ∗ with
f = φ ◦ (f ⊕ g) and g = γ ◦ (f ⊕ g).

The homomorphic image (f ⊕ g)(L) can be “constructed” using f(L) and g(L)
if these two images contain enough information about the boundary behaviour
of A and A respectively, i.e. that f〈RA and g〈RA. To formulate a corresponding
theorem we need some further technical notions:

Notation. If f〈RA and g〈RA, then there exist homomorphisms ρA : Φ⋆ → Σ⋆
RA

and ρA : Γ⋆ → Σ⋆
RA

with RA = ρA ◦ f and RA = ρA ◦ g.
Let ΣR = ΣRA ∪ΣRA and let ρ : (Φ ∪ Γ)∗ → Σ∗

R be the homomorphism defined
by: ρ(x) = ρA(x) if x ∈ Φ and ρ(x) = ρA(x) if x ∈ Γ.
LetRC = {z ∈ Σ∗

R| if z = (p, q)y with (p, q) ∈ ΣR and y ∈ Σ∗
R, then p = q0|RDA,

and if z = x(p, q)(p′, q′)y with (p, q), (p′, q′) ∈ ΣR and x, y ∈ Σ∗
R, then p

′ = q}.
If ΣR is finite, then RC is a regular language (local language). The definition of
RC depends on ΣR. On account of f〈RA and g〈RA this set can be determined
using f(L) and g(L).

Under these assumptions the following holds:

Theorem 5.2. Let L ⊂ Σ∗ be the occurrence language of an APA and A ⊂ T . If
f : Σ∗ → Φ∗ and g : Σ∗ → Γ∗ are homomorphisms with Φ∩Γ = ∅ and MA〈f〈RA

as well as MA〈g〈RA, then (f ⊕ g)(L) = φ−1(f(L)) ∩ γ1(g(L)) ∩ ρ−1(RC).

By this representation (f ⊕ g)(L) is a regular set if L is regular. In [Och96]

14 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

φ−1(f(L)) ∩ γ1(g(L)) ∩ ρ−1(RC) is called the cooperation product of f(L) and
g(L). It is easy to construct a finite automaton recognizing (f ⊕ g)(L) using
corresponding automata for f(L) and g(L). Concerning simplicity of f ⊕ g we
have

Theorem 5.3. If f and g are simple on L by the same assumptions as in the
above theorem, then f ⊕ g is simple on L too.

The proofs of these two theorems as well as the proofs of the other theorems
of this chapter can be found in [Och94c, Och96]. Essential to the statements of
this chapter is “locality” of occurrence steps, i.e. that state changes only occur
in the neighbourhood of the corresponding elementary automata. Therefore oc-
currence sequences may be “rearranged” without changing certain homomorphic
images. Such “rearrangements” are the main proof techniques for these theorems.

The above theorems form one half of our compositional method. They show how
abstractions of the behaviour of components of an APA can be “composed”. But
so far the representation of (f ⊕ g)(L) depends on f(L) and g(L). How can f(L)
and g(L) be determined without using the (complex) occurrence language L of
the complete system ? To achieve this we “embed” the components A and A in
“simplified environments”. Since a component of an APA can be viewed as an
APA too we now have to define how two APA can be “composed”.

The “gluing together” of elementary automata mentioned in the definition of
APA can also be applied to arbitrary APA.

Definition 5.4. Let therefore Ak = ((Zks)s∈Sk, (Φkt,∆kt)t∈T k, Nk, qk0) with
k ∈ {1, 2} be two APA with T 1 ∩ T 2 = ∅ and Z1s = Z2s as well as q10s = q20s
for all s ∈ S1 ∩ S2. Now the asynchronous product A1⊗A2 is defined by
A1⊗A2 = ((Zs)s∈S , (Φkt,∆kt)t∈T , N, q0) with S = S1 ∪ S2, T = T 1 ∪ T 2,
Zs = Zks and q0s = qk0s for all s ∈ Sk and (Φt,∆t) = (Φkt,∆kt) for all t ∈ T k
and N(t) = Nk(t), where k ∈ {1, 2}. We also say that A1 ⊗ A2 is constructed
from A1 and A2 by gluing together at the common state components S1 ∩ S2.
If A and A are complementary components of an APA, then this APA is the
asynchronous product of A and A. In terms of boundary behaviour the follow-
ing theorem gives a sufficient condition to “embed” a component of an APA in
different “environments” without changing its behaviour.

Let X , Y ′, X ′ and Y be four APA, for which the asynchronous products X ⊗Y ′,
X ′⊗Y and X ⊗Y are defined. Let X, Y ′, X ′ and Y are the corresponding index
sets of their elementary automata and SX, SY ′, SX ′ and SY the index sets of
their state components. Additionally we assume that SX ∩ SY ′ = SX ′ ∩ SY =
SX ∩ SY . LXY ′, LX ′Y as well as LXY may denote the occurrence languages
of X ⊗ Y ′, X ′ ⊗ Y and X ⊗ Y respectively.

Theorem 5.5. If RX(LXY ′) = RX′(LX ′Y) and Ry′(LXY ′) = RY (LX
′Y),

then MX(LXY) =MX(LXY ′) and MY (LXY) =MY (LX
′Y).

Let X ⊗Y be a representation of the APA considered in the first two theorems,
then Y = X and L = LXY . If Y ′ and X ′ are “simplified versions” of Y and X
respectively then LXY ′ and LX ′Y can be “less complex” (with an essentially
smaller state space) than L. Now applying the above theorem f(L) and g(L) can

The SH-Verification Tool 15

be determined using LXY ′ and LX ′Y instead of L because MX〈f and MX〈g.

To derive simplicity of homomorphisms on L from investigations on LXY ′ and
LX ′Y we need a “cooperating property” of APA [Och96]:

Definition 5.6. Let LXY ′ ⊂ Ξ∗ be the occurrence language of X ⊗ Y ′ and let
f : Ξ∗ → Φ∗ be a homomorphism. X is called cooperative in X ⊗Y ′ with respect
to f , if MX〈f , Φ ∩MY ′(Ξ) = ∅ and if for each x ∈ LXY ′ there exists a finite
subset H ⊂ (f ⊕MY ′)(x)−1((f ⊕MY ′)(LXY ′)) with ǫ ∈ H such that for each
u ∈ H either
u−1((f ⊕MY ′)(x−1(LXY ′))) = ((f ⊕MY ′)(x)u)−1((f ⊕MY ′)(LXY ′))
or
u−1(H) ∩MY ′(Ξ) = ((f ⊕MY ′)(x)u)−1((f ⊕MY ′)(LXY ′)) ∩MY ′(Ξ) and
u−1(H) ∩ Φ 6= ∅ if ((f ⊕MY ′)(x)u)−1((f ⊕MY ′)(LXY ′)) ∩ Φ 6= ∅.
In combination with the previous theorem the following two theorems [Och96]
allow to derive simplicity of f and g on L = LXY from investigations on LXY ′

and LX ′Y .

Theorem 5.7. Let r and s be homomorphisms with MX〈r〈RX , MY 〈s〈RY ,
r(LXY ′) = MX′(LX ′Y) and s(LX ′Y) = MY ′(LXY ′). If X is cooperative in
X ⊗Y ′ with respect to r and if Y is cooperative in X ′ ⊗Y with respect to s, then
r ⊕ s is simple on LXY .

Theorem 5.8. Let r and s be homomorphisms with MX〈r〈RX , MY 〈s. If r ⊕ s
is simple on LXY then MX ⊕ s is simple on LXY .

Using the partial order method developed in [Och97] X ′ and Y ′ can be computed
efficiently on the basis of X ⊗ Y and simplicity of f ⊕ g on L can be checked
directly.

6. Temporal Logic and Abstraction

Our verification approach can also be combined with temporal logic [Nit94a,
Nit94c, Nit94d, Nit94b, Nit95, Nit98]. In terms of temporal logic, the automaton
of Figure 2 approximately satisfies the formula G(F(RES)) (G: always-operator,
F : eventually-operator; thus G(F(RES)) means ”infinitely often result”), but
the system in Figure 3 does not. This is indeed the case because the abstract-
ing homomorphism is not simple. Using an appropriate type of model checking,
approximate satisfaction of temporal logic formulae can be checked by the sh-
verification tool.

The Algorithm for checking approximate satisfaction of propositional linear-time
temporal logic formulae (PLTL- formulae) is based on the algorithm for linear
satisfaction of PLTL-formulae by Gerth, Peled, Vardi, and Wolper [GPVW96].
The key construction of the algorithm is the construction of a Büchi-automaton
BA to a PLTL-formula η.

The temporal logic formulae (TL-formulae) we use are constructed as follows:

• True and False are atomic TL-formulae.

16 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

• The edge-labels of the automaton representing the concrete or abstracted be-
haviour of the system we are checking are atomic TL-formulae. In addition,
ε is an atomic TL-formula (atomic proposition). ε is satisfied for a concrete
action if and only if the action is mapped to the empty word by the abstrac-
tion.

• Formulae can be combined using the usual Boolean operators ∧, ∨, ¬ and
combinations thereof ⇒ and ⇔.

• Formulae can be combined using the usual temporal logic operators G (al-
ways), F (eventually), U (until), B (before) and X (next).

• Internally we use a temporal operator V which is the dual of the until-operator
U (φVψ is equivalent to ¬((¬φ)U(¬ψ))).

• In the automata that are generated during the model-checking optionally the
before-operator B (φBψ is equivalent ¬((¬φ)Uψ)) can be used instead of V
for better readability.

Algorithm. To check whether a behaviour B satisfies the property Pη repre-
sented by a PLTL-formula η approximately, one has to check whether pre(B) =
pre(B ∩ Pη). Herein, “pre(...)” designates the set of all finitely long prefixes of
ω-words in “...”. Since pre(B) ⊇ pre(B ∩ Pη) always holds, this can be reduced
to pre(B) ⊆ pre(B ∩ Pη). Algorithmically, we have to check whether pre(B)
∩ C(B ∩ Pη) is the empty set. “C(...)” denotes the complement of “...” with
respect to Σ∗ (Σ is the set of all actions of the system, i.e. the alphabet of the
ω-languages B and Pη).

An example for the automata used in the above construction as implemented
in our tool is given in the appendix.

Our experience in practical examples shows that the combination of comput-
ing a minimal automaton of an LTS and model checking on this abstraction is
significantly faster than direct model checking on the LTS.

The preservation result for approximately satisfied properties (Theorem 3.2) can
be formulated in terms of PLTL using a syntactic transformation on PLTL-
formulae [Nit94a, Nit98]. An example is given in section 8.

7. The Tool

As mentioned above, our verification method does not depend on a specific for-
mal specification technique. For practical use the sh-verification tool has to be
combined with a specification tool generating labeled transition systems. We
have done this using the product net machine, and we are now implementing
a specification environment based on asynchronous product automata (APA).
Figure 11 shows the structure of the tool.
The product net machine is a tool for the design and analysis of product nets
[Och91a]. Product nets [BOP89, OP95] are high level Petri nets with individual
tokens. Figure 12 shows a product net specification of our client/server example,
where the resource may eventually be locked forever. The shaded places are
initially marked. In Figure 12 we do not use most of product nets’ possible
features. Indeed it is just a product net representation of a Petri net. The LTS

The SH-Verification Tool 17

LTS - Generator Homomorphism Editor

Automata

Algorithms Checking

Model

Test

Simplicity

Method

Compositional

Project Manager and Formal Specification

Fig. 11. The sh-verification tool

of Figure 3 is computed by the product net machine; it is the reachability graph
of the product net in Figure 12.

Server

Client
S_6

T_7

S_5 S_4

T_4 S_3

S_2

T_3T_2 S_1

VANISH

REQ

REJRES

<x>

<x>

<x>

<x>

<x>

<x><x>

<x>

<x>

<x>

<x><x>

<x>

<x><x>

<x>

Fig. 12. Client Server Example

Practical experiences have been gained with large specifications, for example with
ISDN-, XTP-, and smartcard protocols and by investigating service interactions
in intelligent telecommunication systems [Klu92, Sch92, Gie93, Och93, OP93,
Neb94, Och94a, OP95, CDGE+96, CDF+96]. Now our interest is focused on the
verification of binding co-operations including electronic money and contract
systems.

Technical Requirements. The sh-verification tool and the product net ma-
chine are both implemented in Allegro Common Lisp. The software is freely
available (currently for Solaris and Windows NT) for non commercial purposes,

18 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

but cannot be distributed via anonymous FTP, because of restrictions in the li-
cense agreement for the runtime library of the lisp system. For more information
please contact the authors.

8. A Case Study

To demonstrate our method on a more realistic example we consider a model of
the basic call process of an intelligent telephone network (IN). This call process,
named the basic call state model(BCSM), is currently being standardized. This
standardization process is structured in eight steps. Each step leads to a more
detailed BCSM. These differently detailed standardization steps are called capa-
bility sets (CS). The currently standardized capability set is CS-1 (see [Q.1b]
and especially [Q.1a]).

In this section, we verify a product net specification of the BCSM; through-
out this section, we assume capability set CS-1 when briefly talking of BCSM
[Q.1b, Q.1a]. We do not present the specification itself, but relate finite-state sys-
tems that we computed as abstractions of the BCSM specification’s behaviour to
automata descriptions in the standardization paper [Q.1a]. The complete speci-
fication can be found in [DFGE+95]. Before starting with the verification steps,
we give a brief introduction to the BCSM.

The BCSM handles the basic call process of an IN. This call process is internally
structured, distinguishing caller and callee. The part of the BCSM related to a
caller is named originating BCSM; abbreviated: O-BCSM. The callee oriented
part is named terminating BCSM, or T-BCSM. Services in the IN, as for ex-
ample call forwarding, are add-on features. The interface between BCSM and
services is the service logic. The general structure of an IN, including caller and
callee, is depicted in Figure 13. Dashes represent communication channels.

Callee

Caller O-BCSM

T-BCSM

Service Logic

Fig. 13. The basic structure of an IN.

The BCSM is some kind of a finite-state system. The states are called points
in call (PIC). Added to PIC are detection points (DP) from where the service
logic may be invoked. The finite-state system that represents the BCSM is de-
scribed graphically as well as textually in the standard [Q.1a]. A product net
specification of the originating as well as the terminating BCSM was established
in the SERVINT-project [NO95, DFGE+95, DFGE+96]. There, ambiguities in
the standard, and contradictions between the textual and graphical description
of the BCSM are resolved.

Two abstractions of the BCSM specification’s behaviour leaving visible only the
actions related to the O-BCSM and T-BCSM respectively, lead to exactly the

The SH-Verification Tool 19

resolved finite-state systems of the standard [Q.1a] representing O-BCSM and T-
BCSM. Since all abstractions mentioned are obtained by applying an abstracting
homomorphism that is simple on the concrete behaviour, approximately satis-
fied properties of the abstract behaviour represent corresponding approximately
satisfied properties of the concrete behaviour. This observation, in principle, is
sufficient to verify the correctness of the specification in comparison to [Q.1a]:
the components of the BCSM behave in their concrete environment in the same
way as they would behave in an idealized environment. In the subsequent para-
graphs, we look more closely at the T-BCSM’s behaviour, checking explicitly
some properties.

D
P
1
4
_
n
o
t_
a
rm

ed

D
P
1
3
_
n
o
t_
a
rm

ed

no_answer

authorized

return_DP17_to_start

disconnect

mid_callDP16_not_armed

DP15_not_armed

answer

called_party_answer

called_party_alert

called_party_busy

not_authorized

DP12_not_armed

exception

return_PIC11_to_start

Fig. 14. T-BCSM.

After applying a homomorphism that is the identity function on actions relevant
to the T-BCSM and that takes all other actions to the empty word, we obtain
the finite-state system in Figure 14 that represents the abstract behaviour of
the whole BCSM specification that is related to the T-part. As it is verified by
our tool the abstracting homomorphism is simple on the concrete behaviour. It
extracts the T-BCSM’s behaviour when the T-BCSM is embedded in the en-
vironment that is the O-BCSM. We obtain exactly the behaviour as presented
in the standard [Q.1a]. Consequently all properties that the standard demands
the T-BCSM to satisfy are indeed satisfied for the T-BCSM in the BCSM spec-
ification. Nevertheless we check explicitly a property of the T-BCSM by firstly

20 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

applying another abstraction step.

Figure 14 contains some actions that are interruptions to the straightforward
calling process. These actions are not authorized, called party busy, no answer,
and exception. Whenever one of these actions occurs, an exception handling is
necessary. The exception handling is performed by PIC 11. Occurrence of the
action return PIC11 to start indicates that a successful exception handling has
taken place. To check the property “whenever an interruption of the calling pro-
cess occurs, an exception handling takes place”, we can define a suitable abstrac-
tion on the behaviour presented in Figure 14 that keeps visible the interruption
and the exception handling, and check a suitable temporal logic formula on the
abstract behaviour.

A suitable abstraction on T-BCSM’s behaviour is defined by the homomorphism
that maps not authorized, called party busy, no answer, and exception on the
abstract action interruption, that maps action return PIC11 to start on the ab-
stract action exception handling, and that takes all other actions to the empty
word. The resulting abstract behaviour is depicted in Figure 15.

interruption

exception_handling

Fig. 15. An abstraction of the T-BCSM.

Obviously, G(interruption ⇒ X exception handling) represents an approximately
satisfied property of the behaviour presented in Figure 15. Let h be the abstract-
ing homomorphism on the concrete behaviour that generates the abstract be-
haviour in Figure 14 and let h′ be the abstracting homomorphism on this abstract
behaviour that generates the more abstract behaviour presented in Figure 15.
Because h is simple on the concrete behaviour and h′ is simple on the behaviour
presented in Figure 14 (both behaviours have a strongly connected finite-state
representation), h ◦ h′ is simple on the BCSM specification’s behaviour (Theo-
rem 3.6). According to the syntactic transformation of PLTL-formulae [Nit98]
we obtain, that

G(ε ∨ (interruption ⇒ (εU(¬ε ∧ X (εUexception handling)))))

is an approximately satisfied property of the BCSM specification’s behaviour.

Simplification of this formula leads to

G(interruption ⇒ εUexception handling).

If we interpret this result, we find that the reasonable computations of the BCSM
specification (in this context the reasonable computations are once again the fair
ones) satisfy the correct exception handling property. This illustrates how step-
wise abstraction can be performed which can be regarded as an inverse stepwise
refinement.

The SH-Verification Tool 21

9. Conclusions

We have presented the basic functionality of the sh-verification tool in this arti-
cle. The tool is equipped with the main features necessary to verify specifications
of co-operating systems of industrial size. It comprises a satisfaction relation with
an inherent fairness assumption and an abstraction concept adequate for the par-
ticular, practically useful satisfaction relation. Our verification method, which is
based on the very general notions of approximate satisfaction of properties and
simple language homomorphisms, does not depend on a specific formal specifi-
cation method. It can be applied to all those specification techniques having an
LTS-semantics.

Summarizing, using simple abstractions and approximate satisfaction verifica-
tion can be done in two ways and is supported by our tool:

• System properties are explicitly given by temporal logic formulae or Büchi-
automata. They can be checked on the abstract behaviour (under a simple
homomorphism).

• Specifications of different abstraction levels are compared by corresponding
simple homomorphisms. In that case system properties are given implicitly.

There exists a variety of verification tools which can be found in the literature.
Some are model-checking based, others are proof system based. We consider
COSPAN [Kur94] to be closest to the sh-verification tool. COSPAN is automata
based and contains a homomorphism based abstraction concept. Since the tran-
sition labels of automata in COSPAN are in a Boolean algebra notation, the
abstraction homomorphisms are Boolean algebra homomorphisms which cor-
respond to non-erasing alphabetic language homomorphisms on the automata
level. The sh-verification tool, in addition, offers erasing homomorphisms as an
abstraction concept. COSPAN also considers only linear satisfaction of proper-
ties. Thus fairness assumptions need to be made explicitly in this tool. Besides
many other tools we want to name only two more. Since it was one of the first
verification tools, CESAR should be mentioned [QS82]. A tool which uses the
modal µ-calculus as a specification language for properties [Sti89] is the concur-
rency workbench [CPS93].

We consider the main strength of our tool to be the combination of an inherent
fairness assumption in the satisfaction relation, an abstraction technique com-
patible with approximate satisfaction, and a suitable compositional and par-
tial order method for the construction of only a partial state space. The sh-
verification tool’s user interface and general handling has reached a level of
maturity that enabled its successful application in the industrial area [NO95,
DFGE+95, DFGE+96].

References

[AS85] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, October 1985.

[BD87] S. Budkowski and P. Dembinski. An introduction to estelle. Computer Networks
and ISDN-Systems, 14:3–23, 1987.

[BOP89] H. J. Burkhardt, P. Ochsenschläger, and R. Prinoth. Product nets — a formal

22 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

description technique for cooperating systems. GMD-Studien 165, Gesellschaft
für Mathematik und Datenverarbeitung (GMD), Darmstadt, September 1989.

[CDF+96] C. Capellmann, R. Demant, F. Fatahi, R. Galvez-Estrada, U. Nitsche, and
P. Ochsenschläger. Verification by behavior abstraction: A case study of service
interaction detection in intelligent telephone networks. In Computer Aided Ver-
ification (CAV) ’96, volume 1102 of Lecture Notes in Computer Science, pages
466–469, New Brunswick, 1996.

[CDGE+96] C. Capellmann, R. Demant, R. Galvez-Estrada, U. Nitsche, and P. Ochsenschläger.
Case study: Service interaction detection by formal verification under behaviour
abstraction. In Tiziana Margaria, editor, Proceedings of International Workshop
on Advanced Intelligent Networks’96, pages 71–90, Passau, March 1996.

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based tool for the verification of finite-state systems. In TOPLAS 15,
pages 36–72, 1993.

[DFGE+95] R. Demant, F. Fatahi, R. Galvez-Estrada, U. Nitsche, and P. Ochsenschläger. Ab-
schlußbericht des GMD-/Telekom-Projekts Formale Spezifikations- und Verifika-
tionsmethoden zur Behandlung der Service-Interaction-Problematik – SERVINT.
Abschluß bericht, GMD, Dezember 1995.

[DFGE+96] R. Demant, F. Fatahi, R. Galvez-Estrada, U. Nitsche, and P. Ochsen-
schläger. Zwischenbericht des GMD-/Telekom-Projekts Formale Spezifikations-
und Verifikationsmethoden zur Behandlung der Service-Interaction-Problematik
– SERVINT2. Zwischenbericht, GMD, Juli 1996.

[Eil74] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,
New York, 1974.

[Gie93] H. Giehl. Verifikation von Smartcard-Anwendungen mittels Produktnetzen.
GMD-Studien 225, Gesellschaft für Mathematik und Datenverarbeitung (GMD),
Darmstadt, 1993.

[GPVW96] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In P. Dembinski and M. Sredniawa, editors,
Protocol Specification, Testing, and Verification XV ’95, pages 3–18. Chapman &
Hall, 1996.

[Klu92] W. Klug. OSI-Vermittlungsdienst und sein Verhältnis zum ISDN-D-
Kanalprotokoll. Spezifikation und Analyse mit Produktnetzen. Arbeitspapiere der
GMD 676, Gesellschaft für Mathematik und Datenverarbeitung (GMD), Darm-
stadt, 1992.

[Kur94] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, New Jersey, first edition, 1994.

[Neb94] M. Nebel. Ein Produktnetz zur Verifikation von Smartcard-Anwendungen in
der STARCOS-Umgebung. GMD-Studien 234, Gesellschaft für Mathematik und
Datenverarbeitung (GMD), Darmstadt, 1994.

[Nit94a] U. Nitsche. Propositional linear temporal logic and language homomorphisms. In
Anil Nerode and Yuri V. Matiyasevich, editors, Logical Foundations of Computer
Science ’94, St. Petersburg, volume 813 of Lecture Notes in Computer Science,
pages 265–277. Springer Verlag, 1994.

[Nit94b] U. Nitsche. Simple homomorphisms and linear temporal logic. Arbeitspapiere der
GMD 889, GMD – Forschungszentrum Informationstechnik, Darmstadt, Decem-
ber 1994.

[Nit94c] U. Nitsche. A verification method based on homomorphic model abstraction. In
Proceedings of the 13th Annual ACM Symposium on Principles of Distributed
Computing, page 393, Los Angeles, 1994. ACM Press.

[Nit94d] U. Nitsche. Verifying temporal logic formulas in abstractions of large reachability
graphs. In J. Desel, A. Oberweis, and W. Reisig, editors, Workshop: Algorithmen
und Werkzeuge für Petrinetze. Humboldt Universität Berlin, 1994.

[Nit95] U. Nitsche. A finitary language semantics for propositional linear temporal logic
(abstract). In Preproceedings of the 2nd International Conference on Develop-
ments in Language Theory. University of Magdeburg, 1995.

[Nit98] U. Nitsche. Verification of Co-Operating Systems and Behaviour Abstraction.
PhD thesis, University of Frankfurt, Germany, 1998.

[NO95] U. Nitsche and P. Ochsenschläger. Zwischenbericht des GMD-/Telekom-Projekts
Formale Spezifikations- und Verifikationsmethoden zur Behandlung der Service-
Interaction-Problematik – SERVINT. Zwischenbericht, GMD, Juli 1995.

[NO96] U. Nitsche and P. Ochsenschläger. Approximately satisfied properties of systems

The SH-Verification Tool 23

and simple language homomorphisms. Information Processing Letters, 60:201–
206, 1996.

[NW97] U. Nitsche and P. Wolper. Relative liveness and behavior abstraction (extended
abstract). In Proceedings of the 16th ACM Symposium on Principles of Dis-
tributed Computing (PODC’97), Santa Barbara, CA, 1997.

[Och88] P. Ochsenschläger. Projektionen und reduzierte Erreichbarkeitsgraphen. Ar-
beitspapiere der GMD 349, Gesellschaft für Mathematik und Datenverarbeitung
(GMD), Darmstadt, Dezember 1988.

[Och90] P. Ochsenschläger. Modulhomomorphismen. Arbeitspapiere der GMD 494,
Gesellschaft für Mathematik und Datenverarbeitung (GMD), Darmstadt, Dezem-
ber 1990.

[Och91a] P. Ochsenschläger. Die Produktnetzmaschine. Petri Net Newsletter, 39:11–31,
August 1991. Also appeared as a GMD Arbeitspapier Nr. 505, 1991.

[Och91b] P. Ochsenschläger. Modulhomomorphismen II. Arbeitspapiere der GMD 597,
Gesellschaft für Mathematik und Datenverarbeitung (GMD), Darmstadt, Novem-
ber 1991.

[Och92] P. Ochsenschläger. Verifikation kooperierender Systeme mittels schlichter Homo-
morphismen. Arbeitspapiere der GMD 688, Gesellschaft für Mathematik und
Datenverarbeitung (GMD), Darmstadt, Oktober 1992.

[Och93] P. Ochsenschläger. Verifikation verteilter Systeme mit Produktnetzen. PIK, 16:42–
43, 1993.

[Och94a] P. Ochsenschläger. Kompositionelle Verifikation kooperierender Systeme. Ar-
beitspapiere der GMD 885, GMD – Forschungszentrum Informationstechnik,
Darmstadt, Dezember 1994.

[Och94b] P. Ochsenschläger. Verification of cooperating systems by simple homomorphisms
using the product net machine. In J. Desel, A. Oberweis, and W. Reisig, editors,
Workshop: Algorithmen und Werkzeuge für Petrinetze, pages 48–53. Humboldt
Universität Berlin, 1994.

[Och94c] P. Ochsenschläger. Verifikation von Smartcard-Anwendungen mit Produktnetzen.
In Tagungsband des 4. SmartCard Workshops, Darmstadt, 1994.

[Och95] P. Ochsenschläger. Compositional verification of cooperating systems using simple
homomorphisms. In J. Desel, H. Fleischhack, A. Oberweis, and M. Sonnenschein,
editors, Workshop: Algorithmen und Werkzeuge für Petrinetze, pages 8–13. Uni-
versität Oldenburg, 1995.

[Och96] P. Ochsenschläger. Kooperationsprodukte formaler Sprachen und schlichte Ho-
momorphismen. Arbeitspapiere der GMD 1029, GMD – Forschungszentrum In-
formationstechnik, Darmstadt, 1996.

[Och97] P. Ochsenschläger. Schlichte Homomorphismen auf präfixstabilen partiell kom-
mutativen Sprachen. Arbeitspapiere der GMD 1106, GMD – Forschungszentrum
Informationstechnik, Darmstadt, 1997.

[OP93] P. Ochsenschläger and R. Prinoth. Formale Spezifikation und dynamische Analyse
verteilter Systeme mit Produktnetzen. In Informatik aktuell Kommunikation in
verteilten Systemen, pages 456–470, München, 1993. Springer Verlag.

[OP95] P. Ochsenschläger and R. Prinoth. Modellierung verteilter Systeme – Konzeption,
Formale Spezifikation und Verifikation mit Produktnetzen. Vieweg, Wiesbaden,
1995.

[ORRN97] P. Ochsenschläger, J. Repp, R. Rieke, and U. Nitsche. The SH-verification tool. In
Proceedings of the 2nd International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’97), Cesena, Italy, 1997.

[Q.1a] Draft Revised ITU-T Recommendation Q.1214: Distributed Functional Plane for
Intelligent Network CS-1. March 1995.

[Q.1b] ITU-T Recommendations Q.12xx – Q series: Intelligent Network Recommenda-
tion. 1992.

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
cesar. volume 137 of Lecture Notes in Computer Science, pages 337–351, 1982.

[Sch92] S. Schremmer. ISDN-D-Kanalprotokoll der Schicht 3. Spezifikation und Analyse
mit Produktnetzen. Arbeitspapiere der GMD 640, Gesellschaft für Mathematik
und Datenverarbeitung (GMD), Darmstadt, 1992.

[SSR89] R. Saracco, J. R. W. Smith, and R. Reed. Telecommunication Systems’ Engineer-
ing using SDL. North Holland, 1989.

[Sti89] C. Stirling. An introduction to modal and temporal logics for CCS. In A. Yonezawa
and T. Ito, editors, Concurrency: Theory, Language, and Architecture, volume 391

24 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

of Lecture Notes in Computer Science. Springer Verlag, 1989.
[Zie89] W. Zielonka. Safe executions of recognizable trace languages by asynchronous

automata. In LNCS 363. Springer Verlag, 1989.

Appendix

As an example for the temporal logic algorithms described in chapter 6 we de-
scribe the steps performed by our tool to check whether the property G(F(RES))
is satisfied approximately by the “behaviour-automaton” of Figure 3.

On the automaton level, we have to perform 7 Steps:

1. Compute a Büchi-Automaton representing the property given by a PLTL-
formula according to [GPVW96]. For the formula G(F(RES)) which repre-
sents the property that “a result RES is infinitely often produced” the au-
tomaton construction is represented in two steps in Figure 16 and Figure 17.

FALSE B (FALSE B RES)

RES

TRUE U RES

FALSE B (FALSE B RES)

RES

FALSE B (FALSE B RES)

init-nodes

Fig. 16. Graph for G(F(RES))

2. Construct the synchronous product of the automaton constructed so far and
the automaton representing the behaviour of the considered system. The
synchronous product is the construction of the intersection of languages on
the automaton level. For the “property- automaton” of Figure 17 and the
“behaviour-automaton” of Figure 3, the “product-automaton” is represented
in Figure 18.

3. Reduce the resulting Büchi-Automaton (remove all states which are not
reachable from the initial state or from which no cycle containing an ac-
cepting state is reachable).

4. Ignore acceptance conditions (make all states accepting) and do not interpret
the automaton anymore as an automaton on infinite (ω-) words but as one on
finitely long words (this corresponds to the prefix construction (“pre(...)”).

5. Construct the complement automaton (for a finite-word automaton, not an
ω-automaton).

6. Construct the intersection with the automaton representing the behaviour.

7. Check whether the resulting automaton is empty (does not accept words).

The SH-Verification Tool 25

Automaton for Formula ((G F RES))

−−> (FALSE B (FALSE B RES))

Σ = { REJ REQ RES T_2 T_3 T_4 T_7 VANISH }

ΣRESRES

FALSE B (FALSE B RES)

RES

RESΣRES

TRUE U RES

FALSE B (FALSE B RES)

Σ

ΣRES

RES

FALSE B (FALSE B RES)

RES

Fig. 17. Automaton for G(F(RES))

For the considered example of the behaviour in Figure 3 and the property given
by the PLTL-formula G(F(RES)), the behaviour satisfies the property approx-
imately.

Besides the algorithm described above that checks for approximate satisfaction
we also have implemented algorithms for other kinds of satisfaction relations
(PLTL and AGEF [Nit98]).

26 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

T_2

T_3

T_3

RES

T_3

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

RES
FALSE B (FALSE B RES)

FALSE B (FALSE B RES)
RES

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

FALSE B (FALSE B RES)
TRUE U RES

Start

This component will be "reduced" in step 3

T_7

VANISH

T_2

T_7

REJ

T_3

T_7

T_3

T_7

T_7

REJ

T_2VANISH

T_4

REJ

RES

RES

T_2

VANISH

T_4

REQ

T_3

REQ

T_4

VANISH

REQ

T_3 REQ

Fig. 18. The synchronous product automaton of Figure 3 and Figure 17

