
c©2007 Springer-Verlag. This is an author-created version of the work with DOI: 10.1007/978-
3-540-73986-9 19. The original publication is available at www.springerlink.com.
http://link.springer.com/chapter/10.1007%2F978-3-540-73986-9_19

Abstraction Based Verification of a
Parameterised Policy Controlled System

Peter Ochsenschläger and Roland Rieke ?

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
{ochsenschlaeger,rieke}@sit.fraunhofer.de

Abstract. Safety critical and business critical systems are usually con-
trolled by policies with the objective to guarantee a variety of safety, live-
ness and security properties. Traditional model checking techniques allow
a verification of the required behaviour only for systems with very few
components. To be able to verify entire families of systems, independent
of the exact number of replicated components, we developed an abstrac-
tion based approach to extend our current tool supported verification
techniques to such families of systems that are usually parameterised by
a number of replicated identical components. We demonstrate our tech-
nique by an exemplary verification of security and liveness properties
of a simple parameterised collaboration scenario. Verification results for
configurations with fixed numbers of components are used to choose an
appropriate property preserving abstraction that provides the basis for
an inductive proof that generalises the results for a family of systems
with arbitrary settings of parameters.

Key words: Formal analysis of security and liveness properties, security
modelling and simulation, security policies, parameterised models.

1 Introduction

In a typical policy controlled system, a set of policy rules, posing restrictions on
the system’s behaviour, is used to enforce the required security objectives, such as
confidentiality, integrity and availability. For safety critical systems as well as for
business critical systems or parts thereof, assuring the correctness - conformance
to the intended purpose - is imperative. These systems must guarantee a variety
of safety, liveness and security properties.

The problem approached. Traditional model checking techniques can be used to
analyse such systems and to understand and verify how they behave subject
to different policy constraints. However, because of well known state explosion
problems, the usage of these techniques is limited to systems with very few
components. In this paper we propose an extension of these techniques to a

? Part of the work presented in this paper was developed within the project SicAri
being funded by the German Ministry of Education and Research.

http://link.springer.com/chapter/10.1007%2F978-3-540-73986-9_19

particularly interesting class of systems called parameterised systems. A param-
eterised system describes a family of systems that are finite-state in nature but
scalable. A formal specification of a parameterised system thus covers a family of
systems, each member of which has a different number of replicated components.
Instances of the family can be obtained by fixing the parameters. Extensions of
model checking techniques are required that support verification of properties
that are valid independently of given concrete parameters.

Contributions. To be able to verify entire families of critical systems, indepen-
dent of the exact number of replicated components, we developed an abstraction
based approach to extend our current tool supported verification techniques to
such parameterised systems. Abstraction is a fundamental and widely-used ver-
ification technique. It can be used to reduce the verification of a property over a
concrete system, to checking a related property over a simpler abstract system
[1]. In this paper however we need an inductive proof on the construction of
the behaviour of the parameterised system to show that it results in identical
abstract system behaviour for any given parameter configuration. This allows
the verification of parameterised systems by constructing abstract systems that
can be model checked.

In the case of our abstraction based approach, the key problem is the choice of
an appropriate abstraction that, (1) is property preserving, (2) results in identical
abstract system behaviour for any given parameter configuration, and, (3) is
sufficiently precise to express the required properties at the chosen abstraction
level. To solve this problem, we

– compute the system behaviour and verify the required properties for some
configurations with fixed numbers of components;

– we then use the results to choose an appropriate property preserving ab-
straction that results in identical abstract system behaviour for any given
parameter configuration;

– based on this abstraction, we provide an inductive proof (by hand) that
generalises the results for a family of systems with arbitrary settings of pa-
rameters.

In this paper we demonstrate our technique by an exemplary verification of
security and liveness properties of a simple parameterised collaboration scenario.

The subsequent paper is structured as follows. In Sect. 2 we review some
related work. Section 3 introduces a collaboration scenario that we will use
throughout this paper to illustrate the usage of the proposed method for analy-
sis of parameterised models. Section 4 describes the formal modelling technique,
the abstraction based verification concept and the verification tool while Sect. 5
presents an exemplary verification of the collaboration scenario. Finally, the pa-
per ends with conclusions and an outlook in Sect. 6.

2

2 Related Work

Analysis of security policies. The research in the field of security policies has
gained increasing attention in the past few years. Many research papers ap-
peared that investigated security policies on its own and abstracted from the
systems needed to enforce these policies. These activities concentrated on the
examination of specific properties of policies like consistency, freedom of con-
flicts, information flow implications and effects to system safety. This allows
shifting the attention from specifics of computer system towards the analysis of
properties that are inherent to the policy itself.

In the information flow analysis approach presented in [2] for the SELinux
system, a labelled transition system (LTS) is generated from the policy speci-
fications that models the information flow policy. Temporal logic formulas are
used to specify the security goals. The NuSMV (http://nusmv.irst.itc.it/)
model-checker verifies the security goals on this LTS.

A method to enforce rigorous automated network security management using
a network access control policy is presented in [3]. This method is illustrated
using examples based on enforcement strategy by distributed packet filtering
and confidentiality/authenticity goals enforced by IPsec mechanisms.

In [4] a model-based approach focussing on the validation of network security
policies and the interplay of threats and vulnerabilities and system’s behaviour
is proposed. This approach is based on Asynchronous Product Automata (APA)
[5]. APA are also used as a basis of the work presented in this paper.

Verification approaches for parameterised systems. An extension to the Murϕ
verifier to verify systems with replicated identical components through a new
data type called RepetitiveID (with restricted usage) is presented in [6]. The
verification is performed by explicit state enumeration in an abstract state space
where states do not record the exact numbers of components. Murϕ automat-
ically checks the soundness of this abstraction and translates the system de-
scription to an abstract state graph for a system of a fixed size. During the
verification of this system, Murϕ uses a run-time check to determine if the re-
sult can be generalised for a family of systems. The soundness of the abstraction
algorithm is guaranteed by the restrictions on the use of repetitiveIDs. These
restrictions allow Murϕ to decide which components are abstractable using the
repetition constructors, enforce symmetry in the system, which enables the au-
tomatic construction of abstract states, and, enforce the repetitive property in
the system, which enables the automatic construction of the abstract successors.
A typical application area of this tool are cache coherence protocols. Many cache
coherence protocols satisfy the above restrictions.

The aim of [7] is an abstraction method through symmetry which works
also when using variables holding references to other processes which is not
possible in Murϕ. An implementation of this approach for the SPIN model-
checker (http://spinroot.com/) is described.

In [8] a methodology for constructing abstractions and refining them by
analysing counter-examples is presented. The method combines abstraction,

3

model-checking and deductive verification and in particular, allows to use the set
of reachable states of the abstract system in a deductive proof even when the ab-
stract model does not satisfy the specification and when it simulates the concrete
system with respect to a weaker simulation notion than Milner’s. The tool InVeSt
supports this approach and makes use of PVS (http://pvs.csl.sri.com/) and
SMV (http://www.cs.cmu.edu/ modelcheck/smv.html). This approach how-
ever does not consider liveness properties.

In [9] a technique for automatic verification of parameterised systems based
on process algebra CCS [10] and the logic modal mu-calculus [11] is presented.
This technique views processes as property transformers and is based on com-
puting the limit of a sequence of mu-calculus formula generated by these trans-
formers.

The above-mentioned approaches demonstrate, that finite state methods
combined with deductive methods can be applied to analyse parameterised sys-
tems. The approaches differ in varying amounts of user intervention and their
range of application. A survey of a number of approaches to combine model
checking and theorem proving methods is given in [12].

Characteristic of our approach is the flexibility of abstractions defined by
language homomorphisms and the consideration of liveness properties.

3 Collaboration Scenario

There are manifold uses and aspects of the terms policy in general and security
policy specifically. In the context of this paper we use the concepts of the eX-
tensible Access Control Markup Language (XACML [13]) to express a security
policy, but for readability we use a much simpler syntax.

We consider three roles (classes of collaboration partners with a uniform
security policy) in this scenario namely trustworthy clients (TC), observers
(OB) and a manager (M) representing the collaboration infrastructure. There
is only one role player for the manager but an unspecified number of role play-
ers for the two types of clients. The set of subjects is defined by subject =
{trustworthy client, observer,manager}. For our collaboration scenario we now
assume that a group of trustworthy clients hold a session. The session can be
in state public (pub) or confidential (conf). The set of possible session states
is thus defined by s state = {pub, conf}. The initial session state is pub. We
furthermore assume that the set of possible actions is defined by action =
{join, leave, close, open} and that the following policy rules govern the session.

rule1 When the session is in state pub, then observers are permitted to join.
rule2 Observers are permitted to leave at any time.
rule3 When no observers participate in the session, then the manager can close

the session (change state to conf).
rule4 The manager can open the session (change state to pub) at any time.

To be able to decide whether observers are currently participating in a ses-
sion, we furthermore use a counter o count ∈ N0 for the current count of ob-
servers in the session. The initial value of o count is 0. We don’t consider any

4

actions of the trustworthy clients in the model because we consider this irrelevant
for the security goals.

In XACML a policy is given by a set of rules and a rule-combining algorithm.
Each rule is composed of a condition, an effect, and a target. The conditions
(predicates on attributes of subject, resource, action) associated with a policy
rule specify when the policy rule is applicable. If the condition returns False, the
rule returns NotApplicable. If the condition returns True, the value of the effect
element (Permit or Deny) is returned.

For better readability we use an abbreviated syntax in this paper and define
the rules from our example now by

rulex : subject× s state× action× o count→ {permit, deny, not applicable}.

rule1(s, a, z, c) =

{
permit | s = observer ∧ a = join ∧ z = pub

not applicable | else

rule2(s, a, z, c) =

{
permit | s = observer ∧ a = leave

not applicable | else

rule3(s, a, z, c) =

{
permit | s = manager ∧ a = close ∧ c = 0

not applicable | else

rule4(s, a, z, c) =

{
permit | s = manager ∧ a = open ∧ z = conf

not applicable | else

The rule-combining algorithm we use to derive the policy result from the
given rules is the permit-overrides algorithm, if a single permit result is encoun-
tered, then the combined result is permit. So we define the policy for our example
now by

policy : subject× action× s state× o count→ {permit, deny}.

policy(s, a, z, c) =





permit | rule1(s, a, z, c) = permit ∨
rule2(s, a, z, c) = permit ∨
rule3(s, a, z, c) = permit ∨
rule4(s, a, z, c) = permit

deny | else

Generally, security policies have to guarantee certain security properties of a
system and moreover they must not prevent the system from working.

In our example we define the following security properties:

– the collaboration is in state conf only if no observer is present (security),
and

– always eventually state changes between pub and conf are possible (liveness).

These properties are formally verified in Sect. 5.

5

4 Verification of System Properties

Our operational finite state model of the behaviour of the given collaboration
scenario is based on Asynchronous Product Automata (APA), a flexible opera-
tional specification concept for cooperating systems [5]. An APA consists of a
family of so called elementary automata communicating by common components
of their state (shared memory).

4.1 Formal Modelling Technique

We now introduce the formal modelling techniques used, and illustrate the usage
by our collaboration example.

Definition 1. An Asynchronous Product Automaton consists of

– a family of state sets Zs, s ∈ S,
– a family of elementary automata (Φe, ∆e), e ∈ E and
– a neighbourhood relation N : E→ P(S)

S and E are index sets with the names of state components and of elementary
automata and P(S) is the power set of S.

For each elementary automaton (Φe, ∆e) with Alphabet Φe, its state tran-
sition relation is ∆e ⊆ ��s∈N(e)(Zs) × Φe × ��s∈N(e)(Zs). For each element of
Φe the state transition relation ∆e defines state transitions that change only the
state components in N(e). An APA’s (global) states are elements of ��s∈S(Zs).
To avoid pathological cases it is generally assumed that S =

⋃
e∈E(N(e)) and

N(e) 6= ∅ for all e ∈ E. Each APA has one initial state q0 = (q0s)s∈S ∈
��s∈S(Zs). In total, an APA A is defined by

A = ((Zs)s∈S, (Φe, ∆e)e∈E, N, s0)

Finite state model of the collaboration scenario. The collaboration model
described in Sect. 3 is specified for the proposed analysis method using the
following APA state components:
S = {s state, o count} with Zs state = {pub, conf} and Zo count = N0,

q0 = (q0s state, q0o count) = (pub, 0).
The set of elementary automata E = {OB join,OB leave,M conf,M pub}

represents the possible actions that the subjects (manager and observers) can
take. These specifications are represented in the data structures and initial con-
figuration of the state components in the APA model. The lines in Fig. 1 between
state components and elementary automata represent the neighbourhood rela-
tion.

From Fig. 1 we conclude that N(e) = S for each e ∈ E.
For each e ∈ E we choose Φe = {#}. Therefore we can omit the middle compo-
nent of the state transition relation ∆e.

Using the abbreviation state = {pub, conf}, it holds ∆e ⊂ (state × N0) ×
(state×N0) for each e ∈ E.

6

OB join - observer join
collaboration,

OB leave - observer
leave collaboration,

M pub - manager
changes state to
pub,

M conf - manager
changes state to conf

Fig. 1. Collaboration model

In detail:
∆OBleave

= {((x, y), (x, y − 1)) ∈ (state×N0)× (state×N0) |
y > 0 ∧ policy(observer, leave, x, y) = permit}

∆OBjoin
= {((x, y), (x, y + 1)) ∈ (state×N0)× (state×N0) |

y > maxOB ∧ policy(observer, join, x, y) = permit}
∆Mconf

= {((x, y), (conf, y)) ∈ (state×N0)× (state×N0) |
policy(manager, close, x, y) = permit}

∆Mpub
= {((x, y), (pub, y)) ∈ (state×N0)× (state×N0) |
policy(manager, open, x, y) = permit}

Note that this APA is parameterised by maxOB ∈ N0.

Definition 2. An elementary automaton (Φe, ∆e) is activated in a state q =
(qs)s∈S ∈ ��s∈S(Zs) as to an interpretation i ∈ Φe, if there are (ps)s∈N(e) ∈
��s∈N(e)(Zs) with ((qs)s∈N(e), i, (ps)s∈N(e)) ∈ ∆e. An activated elementary au-
tomaton (Φe, ∆e) can execute a state transition and produce a successor state p =
(ps)s∈S ∈ ��s∈S(Zs), if qr = pr for r ∈ S \ N(e) and (qs)s∈N(e), i, (ps)s∈N(e) ∈
∆e. The corresponding state transition is (q, (e, i), p).

For example ((conf, 0), (M pub,#), (pub, 0)) is a state transition of our ex-
ample. As mentioned above, we omit # in the sequel.

Definition 3. The behaviour of an APA is represented by all possible coher-
ent sequences of state transitions starting with initial state q0. The sequence
(q0, (e1, i1), q1) (q1, (e2, i2), q2) (q2, (e3, i3), q3) . . . (qn−1, (en, in), qn) with ik ∈
Φek represents one possible sequence of actions of an APA. qn is called the goal
of this action sequence.

State transitions (p, (e, i), q) may be interpreted as labelled edges of a directed
graph whose nodes are the states of an APA: (p, (e, i), q) is the edge leading from
p to q and labelled by (e, i). The subgraph reachable from the node q0 is called
the reachability graph of an APA.

Let Q denote the set of all states q ∈ ��s∈S(Zs) that are reachable from the
initial state q0 and let Ψ denote the set of all state transitions with the first
component in Q.

7

The set L ⊂ Ψ∗ of all action sequences with initial state q0 including the
empty sequence ε denotes the action language of the corresponding APA. The
action language is prefix closed. By definition q0 is the goal of ε.

The reachability graph of the example depends on the parameter maxOB ∈
N0; its set of nodes is given by QmaxOB and its set of edges is ΨmaxOB .

It is QmaxOB ⊂ {pub, conf} ×N0 and ΨmaxOB ⊂ QmaxOB × E×QmaxOB .
The reachability graph for maxOB = 0 is shown in Fig. 2. The reachability graph
for maxOB = 1 is depicted by the solid lines in Fig. 3, whereas the dashed lines
in the same figure show the reachability graph for maxOB = 2.

(pub,0)(conf,0)

M_conf
M_pub

M_conf

Fig. 2. Reachability graph for maxOB = 0

(pub,0) (pub,2)(pub,1)(conf,0)

OB_joinM_conf

OB_leave

OB_join

M_pub
M_conf

OB_leave

Fig. 3. Reachability graphs for maxOB = 1 (solid lines) and maxOB = 2 (dashed)

For example ((pub, 0),M conf, (conf, 0))((conf, 0),M pub, (pub, 0)) is an el-
ement of the action language.

4.2 Abstraction Based Verification Concept

Now behaviour abstraction of an APA can be formalised by language homomor-
phisms, more precisely by alphabetic language homomorphisms h : Σ∗ → Σ′∗.

By these homomorphisms certain transitions are ignored and others are re-
named, which may have the effect, that different transitions are identified with
one another. A mapping h : Σ∗ → Σ′∗ is called a language homomorphism if
h(ε) = ε and h(yz) = h(y)h(z) for each y, z ∈ Σ∗. It is called alphabetic, if
h(Σ) ⊂ Σ′ ∪ {ε}.

It is now the question, whether, by investigating an abstract behaviour, we
may verify the correctness of the underlying concrete behaviour. Generally under
abstraction the problem occurs, that an incorrect subbehaviour can be hidden

8

by a correct one. We will answer this question positively, requiring a restriction
to the permitted abstraction techniques [1].

As it is well known, system properties are divided into two types: safety (what
happens is not wrong) and liveness properties (eventually something desired
happens, e.g. availability) [14].

On account of liveness aspects system properties are formalised by ω-languages
(sets of infinite long words). So to investigate satisfaction of properties “infinite
system behaviour” has to be considered. This is formalised by so called Eilenberg
limits of action languages (more precisely: by Eilenberg limits of modified action
languages where maximal words are continued by an unbounded repetition of a
dummy action) [15].

The usual concept of linear satisfaction of properties (each infinite run of the
system satisfies the property) is not suitable in this context because no fairness
constraints are considered. We put a very abstract notion of fairness into the
satisfaction relation for properties, which considers that independent of a finitely
long computation of a system certain desired events may occur eventually. To
formalise such “possibility properties”, which are of interest when considering
what we call cooperating systems, the notion of approximate satisfaction of
properties is defined in [15].

Definition 4. A system approximately satisfies a property if and only if each
finite behaviour can be continued to an infinite behaviour, which satisfies the
property.

For safety properties linear satisfaction and approximate satisfaction are
equivalent [15]. To deduce approximately satisfied properties of a specification
from properties of its abstract behaviour an additional property of abstractions
called simplicity of homomorphisms on an action language [16] is required. Sim-
plicity of homomorphisms is a very technical condition concerning the possible
continuations of finite behaviours.

For regular languages simplicity is decidable. In [16] a sufficient condition
based on the strongly connected components of corresponding automata is given,
which easily can be checked. Especially: If the automaton or reachability graph
is strongly connected, then each homomorphism is simple.

The following theorem [15] shows that approximate satisfaction of properties
and simplicity of homomorphisms exactly fit together for verifying cooperating
systems.

Theorem 1. Simple homomorphisms define exactly the class of such abstrac-
tions, for which holds that each property is approximately satisfied by the abstract
behaviour if and only if the “corresponding” property is approximately satisfied
by the concrete behaviour of the system.

Formally, the “corresponding” property is expressed by the inverse image of
the abstract property with respect to the homomorphism.

In the example of this paper the desired security properties are safety and
liveness properties. Generally there are more complex security properties. In [17]

9

and [18] it has been shown how authenticity, provability and confidentiality are
also treated in terms of prefix closed languages and property preserving language
homomorphisms.

4.3 Verification Tool

The Simple Homomorphism (SH) verification tool [5] is used to analyse the col-
laboration model for different concrete values of maxOB. It has been developed
at the Fraunhofer-Institute for Secure Information Technology. The SH verifica-
tion tool provides components for the complete cycle from formal specification to
exhaustive validation as well as visualisation and inspection of computed reach-
ability graphs and minimal automata. The applied specification method based
on Asynchronous Product Automata (APA) is supported by this tool. The tool
manages the components of the model, allows to select alternative parts of the
specification and automatically glues together the selected components to gener-
ate a combined model of the APA specification. After an initial state is selected,
the reachability graph is automatically computed by the SH verification tool.

The tool provides an editor to define homomorphisms on action languages,
it computes corresponding minimal automata [19] for the homomorphic images
and checks simplicity of the homomorphisms.

Model checking. If it is required to inspect some or all paths of the graph to
check for the violation of a security property, as it is usually the case for liveness
properties, then the tool’s temporal logic component can be used. Temporal
logic formulae can also be checked on the abstract behaviour (under a simple
homomorphism). The method for checking approximate satisfaction of properties
fits exactly to the built-in simple homomorphism check [5].

The SH verification tool successfully has been applied in several security
projects such as Valikrypt (http://www.bsi.bund.de/fachthem/valikrypt/)
and CASENET1.

5 Verification of the Collaboration Scenario

An outline of our verification concept for parameterised models, exemplary re-
alised for the collaboration scenario, is given in Fig. 4.

The abstraction based verification concept introduced in Sect. 4.2 and the
tool support described in Sect. 4.3 cover the part marked by solid lines in Fig. 4
whereas we now prove the components marked by dashed lines.

Using the graphs of Fig. 2 and Fig. 3 as induction base we will now prove
Lemma 1 below by induction on maxOB. We use the abbreviations
Tmjoin for ((pub,maxOB), OB join, (pub,maxOB + 1)) and
Tmleave for ((pub,maxOB + 1), OB leave, (pub,maxOB)).

1 The EU project CASENET (http://www.casenet-eu.org/) has provided a tool-
supported framework for the systematic specification, design and analysis of e-
commerce and e-government transactions to produce protocols with proven security
properties, and to assist in code generation for these protocols.

10

figure 1
definition 1

modell (APA)
parameterised

figure 2 (b)
definition 3

behaviour
extended

figure 2 (a)
definition 3

behaviour

figure 4

abstract representation

abstract representation

P1, P2

properties

P1’, P2’

 properties
’corresponding’

theorem 1 lemma 4
proof:

proof: lemma 2
simple homomorphism

induction
conclude by

SH verification tool
proof by

by SH verification tool
computation and proof
simple homomorphism

parameterorder
induction on

SH verification tool
computation by
small parameters

Fig. 4. Verification concept for parameterised APA

Lemma 1. (a) QmaxOB = {(pub, i)|0 ≤ i ≤ maxOB} ∪ {(conf, 0)}
(b) ΨmaxOB+1 = ΨmaxOB ∪̇ {Tmjoin, Tmleave}

Proof. Figure 3 shows the reachability graph with maxOB = 1. Together with
Fig. 2, Fig. 3 proves the induction base.
Induction step.
By inspection of the 4 elementary automata we get: ΨmaxOB ⊂ ΨmaxOB+1.
Starting from the nodes in QmaxOB from maxOB + 1 only the additional tran-
sitions Tmjoin and Tmleave are possible.

ut
It follows by induction:

Lemma 2. For each maxOB ∈ N0 the corresponding reachability graph is finite
and strongly connected.

Let LmaxOB ⊂ Ψ∗maxOB denote the action language, then using Lemma 1(b)
we can derive

Lemma 3. (a) LmaxOB ⊂ LmaxOB+1 and
(b) for each u ∈ LmaxOB+1: h(u) ∈ LmaxOB with the homomorphism

h : Ψ∗maxOB+1 → Ψ∗maxOB

with h(Tmjoin) = ε = h(Tmleave) and h(x) = x for x ∈ ΨmaxOB

(c) The goal of u is identical to the goal of h(u) or
the goal of u is (pub,maxOB + 1) and the goal of h(u) is (pub,maxOB).

Proof of Lemma 3 (b) by induction on the length of u.
Induction base. Lemma 3(b) is true for u = ε. Note that by definition the goal
of the empty transition sequence is equal to the initial state of the APA.

Induction step. Consider ua ∈ LmaxOB+1 with a ∈ ΨmaxOB+1. From induc-
tion hypothesis there are 2 different cases:

11

Case 1. The goal of u is equal to the goal of h(u) and therefore an element
of QmaxOB .
Therefore a ∈ ΨmaxOB ∪ {Tmjoin}.
For a ∈ ΨmaxOB holds: h(ua) = h(u)h(a) = h(u)a
Therefore from induction hypothesis h(ua) ∈ LmaxOB and goals of ua and h(ua)
are equal.
For a = Tmjoin the goal of u and therefore also the goal of h(u) is (pub,maxOB).
Now it holds that h(ua) = h(u)h(a) = h(u).
From induction hypothesis we get that h(ua) ∈ LmaxOB and goal of ua is
(pub,maxOB + 1) and goal of h(ua) is (pub,maxOB).

Case 2. The goal of u is (pub,maxOB + 1) and goal of h(u) is (pub,maxOB).
Then: a = Tmleave

And so:
h(ua) = h(u)h(a) = h(u) ∈ LmaxOB and ua and also h(ua) have the same goal,
namely (pub,maxOB). ut

Now from Lemma 3 (a) we get LmaxOB = h(LmaxOB) ⊂ h(LmaxOB+1)
and from 3 (b) we get h(LmaxOB+1) ⊂ LmaxOB

together LmaxOB = h(LmaxOB+1).
For each homomorphism f : Ψ∗maxOB+1 → Σ′∗ with f(Tmjoin) = ε = f(Tmleave)
it holds that: f(LmaxOB+1) = f(h(LmaxOB+1)) = f(LmaxOB)
and so:

Lemma 4. With the assumptions above holds: f(LmaxOB+1) = f(LmaxOB)

5.1 Proving Security and Liveness of the Collaboration Example

To consider our example’s correctness we have to observe the state changes
between pub and conf . So we define an appropriate homomorphism

c : Ψ∗maxOB → Ψ∗maxOB by
c(((x1, x2), e, (y1, y2))) = ((x1, x2), e, (y1, y2)) if x1 6= y1 , and
c(((x1, x2), e, (y1, y2))) = ε if x1 = y1 .

This homomorphism c fulfils the condition of Lemma 4 and therefore we get
c(LmaxOB+1) = c(LmaxOB).

This implies c(LmaxOB) = c(L0) for each maxOB ∈ N0.

21

((conf,0),M_pub,(pub,0))

((pub,0),M_conf,(conf,0))

Initial state is 1.
All states are final states.

Fig. 5. Minimal automaton of c(L0)

12

It is easy to see, that the automaton of Fig. 5 is the minimal automaton of
c(L0).

This automaton shows that the collaboration is in state conf only if no
observer is present (P1). Moreover always state changes between pub and conf
are possible (P2).

By Lemma 2 c is simple on each LmaxOB and therefore (Theorem 1) corre-
sponding properties P1’ and P2’ hold for each concrete behaviour LmaxOB . In
content P1’ is the same as P1. P2’ is the property that always eventually state
changes between pub and conf are possible. The difference between P2 and P2’
is caused by actions of the concrete behaviour which are mapped to ε by the
homomorphism c. P1’ and P2’ are the desired properties of the collaboration as
formulated in Sect. 3.

6 Conclusions and Future Work

Based on property preserving abstractions (simple homomorphisms) we com-
bined our tool supported finite state methods with induction proofs to verify
security and liveness properties of a parameterised system.

We have shown how abstractions serve as a framework for individual proofs
of problem specific security properties. So our results are no contradictions to
well known undecidability properties of general security models e.g. Harrison-
Ruzzo-Ullman.

This paper focussed on properties which are independent of concrete param-
eter values. Considering parameterised abstract behaviours we will extend our
method to verify parameter dependent properties. The induction proofs in this
paper are “handmade”. So it would be desirable to support such proofs by a the-
orem prover. For that purpose our system specifications based on parameterised
APA have to be represented in a corresponding theorem prover.

Acknowledgements. We would like to thank Carsten Kunz, Carsten Rudolph
and Björn Steinemann for cooperation on early versions of this work and many
productive discussions on the subject.

References

1. Ochsenschläger, P., Repp, J., Rieke, R.: Abstraction and composition – a verifi-
cation method for co-operating systems. Journal of Experimental and Theoretical
Artificial Intelligence 12 (2000) 447–459 Copyright: c©2000, American Association
for Artificial Intelligence (www.aaai.org). All rights reserved.

2. Guttman, J.D., Herzog, A.L., Ramsdell, J.D.: Information flow in operating sys-
tems: Eager formal methods. IFIP WG 1.7 Workshop on Issues in the Theory of
Security (2003)

3. Guttman, J.D., Herzog, A.L.: Rigorous automated network security management.
International Journal of Information Security 4(1-2) (2005) 29–48

13

4. Rieke, R.: Modelling and Analysing Network Security Policies in a Given Vulnera-
bility Setting. In: Critical Information Infrastructures Security, First International
Workshop, CRITIS 2006, Samos Island, Greece. Volume 4347 of LNCS., Springer
(2006) 67–78 c© Springer.

5. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting, The International Journal of Formal Method 11 (1999) 1–24

6. Ip, C.N., Dill, D.L.: Verifying Systems with Replicated Components in Murϕ.
Formal Methods in System Design 14(3) (1999) 273–310

7. Derepas, F., Gastin, P.: Model checking systems of replicated processes with spin.
In: SPIN ’01: Proceedings of the 8th international SPIN workshop on Model check-
ing of software, New York, NY, USA, Springer-Verlag New York, Inc. (2001) 235–
251

8. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by
abstraction. In Margaria, T., Yi, W., eds.: TACAS. Volume 2031 of Lecture Notes
in Computer Science., Springer (2001) 98–112

9. Basu, S., Ramakrishnan, C.R.: Compositional analysis for verification of parame-
terized systems. Theor. Comput. Sci. 354(2) (2006) 211–229

10. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice Hall (1989)

11. Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction (2001)
12. Uribe, T.E.: Combinations of model checking and theorem proving. In: FroCoS

’00: Proceedings of the Third International Workshop on Frontiers of Combining
Systems, London, UK, Springer-Verlag (2000) 151–170

13. Moses, T.: eXtensible Access Control Markup Language (XACML), Version 2.0.
Technical report, OASIS Standard (2005)

14. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters
21(4) (1985) 181–185

15. Nitsche, U., Ochsenschläger, P.: Approximately satisfied properties of systems
and simple language homomorphisms. Information Processing Letters 60 (1996)
201–206

16. Ochsenschläger, P.: Verification of cooperating systems by simple homomorphisms
using the product net machine. In Desel, J., Oberweis, A., Reisig, W., eds.: Work-
shop: Algorithmen und Werkzeuge für Petrinetze, Humboldt Universität Berlin
(1994) 48–53

17. Gürgens, S., Ochsenschläger, P., Rudolph, C.: On a formal framework for security
properties. International Computer Standards & Interface Journal (CSI), Special
issue on formal methods, techniques and tools for secure and reliable applications
(2004)

18. Gürgens, S., Ochsenschläger, P., Rudolph, C.: Abstractions preserving parameter
confidentiality. In: Computer Security – ESORICS 2005. (2005) 418–437 Copy-
right: c©2005, Springer Verlag.

19. Eilenberg, S.: Automata, Languages and Machines. Volume A. Academic Press,
New York (1974)

14

