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Abstract. Shuffle projection is motivated by the verification of safety
properties of special parameterized systems. Basic definitions and prop-
erties, especially related to alphabetic homomorphisms, are presented.
The relation between iterated shuffle products and shuffle projections is
shown. A special class of multi-counter automata is introduced, to for-
mulate shuffle projection in terms of computations of these automata
represented by transductions. This reformulation of shuffle projection
leads to construction principles for pairs of languages closed under shuf-
fle projection. Additionally, it is shown that under certain conditions
these transductions are rational, which implies decidability of closure
against shuffle projection. Decidability of these conditions is proven for
regular languages. Finally, without additional conditions, decidability of
the question, whether a pair of regular languages is closed under shuffie
projection, is shown. In an appendix the relation between shuffle projec-
tion and the shuffle product of two languages is discussed. Additionally,
a kind of shuffle product for computations in S-automata is defined.
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1 Introduction and Motivation

The definition of shuffle projection is motivated by our investigations of self-
similarity of scalable systems [11]. Let us consider some examples:

Example 1. A server answers requests of a family of clients. The actions of the
server are considered in the following. We assume w.r.t. each client that a request
will be answered before a new request from this client is accepted. If the family
of clients consists of only one client, then the automaton in Fig. 1(a) describes
the system behavior S C X*, where X' = {a,b}, the label a depicts the request,
and b depicts the response.

Ezample 2. Fig. 1(b) now describes the system behavior S(1,2y C Ef{kl 2} for two

clients 1 and 2, under the assumption that the server handles the requests of
different clients non-restricted concurrently.



(a) Actions at a server (b) Two clients served concur-
w.r.t. a client rently by one server

Fig. 1. Scalable client-server system

For ) #1 and ¢ € I let 215y denote pairwise disjoint copies of X. The ele-

ments of X'y, are denoted by a; and Xy := U Ytiy- Additionally let Xy := 0,
i€l

and Xy := {e}. The index i describes the bijection a <> a; for a € ¥ and a; € X;;.

Ezample 3. For () # I C IN with finite I, let now S; C X} denote the system
behavior w.r.t. the client set /. For each i € IN Sy;y is isomorphic to S, and Sy
consists of the non-restricted concurrent run of all Sg;y with 7 € 1.

Let Z; denote the set of all finite non-empty subsets of IN (the set of all possible
clients). Then, the family (S7);ez, has the following properties:

— I C K implies S; C Sk (monotony)
— I = K implies Sy ~ Sk (uniform parameterization)

Such families are called scalable systems [11].
Here ~ denotes isomorphic. Notice, each bijection ¢ : I — K defines an isomor-
phism L% HPIEE D N

In section 2 the basic definitions and properties, especially related to al-
phabetic homomorphisms, are presented. Section 3 shows the relations between
iterated shuffle products and shuffle projections. In section 4 a special class of
multi-counter automata are introduced, to formulate in section 5 shuffle projec-
tion in terms of computations of these automata. This reformulation of shuffle
projection leads in section 6 to construction principles for pairs of languages
closed under shuffle projection. In section 7 the results of section 5 are repre-
sented by transductions. Additionally, it is shown that under certain conditions
these transductions are rational, which imply decidability of closure against shuf-
fle projection. In section 8 decidability of these conditions is proven for regular
languages. Finally, without the restrictions of section 7, decidability of the ques-
tion, whether a pair of regular languages is closed under shuffle projection, is
shown. In an appendix the relation between shuffle projection and the shuffle
product of two languages is discussed. Additionally a kind of shuffle product for
computations in S-automata is defined, which shows the results of section 5 from
another point of view.



2 Basic Definitions and Homomorphic Properties

Definition 1.
For ICN andn € N let 7l : X7 — X" be the homomorphisms defined by

TI((J,‘): alaiezlﬁ{n}
nAT € |ai621\{n} ’

For a singleton set {n}, IR ¥,y — X7 is an isomorphism.
For I € 7 holds

nel

Definition 2 ( (£(L)7)rez, )-
Let ) # L C X* be prefiz closed and

for I €.

The systems £(L); consist of the “non-restricted concurrent run” of all sys-
tems (T{Z})_I(L) C X7,y with i € I. Because T,L-{z} : Efi} — X* are isomorphisms,

7

(Ti{i})*l(L) are pairwise disjoint copies of L.

Theorem 1.
(L(L)r)rez, is a scalable system [11].

Now we show how to construct well-behaved systems by restricting concurrency
in the behaviour-family £. In Example 3 holds S; = £(S); for I € Z;. If, in Ex-
ample 3, the server needs specific resources for the processing of a request, then
- on account of restricted resources - an non-restricted concurrent processing of
requests is not possible. Thus, restrictions of concurrency in terms of synchro-
nization conditions are necessary. One possible but very strong restriction is the
requirement that the server handles the requests of different clients in the same
way as it handles the requests of a single client, namely, on the request follows
the response and vice versa. This synchronization condition can be formalized
with the help of S and the homomorphisms &7.

Definition 3.
For a set I let the homomorphism

Ol 5% — 5% be defined by O (a;) :=a,

foriel andac X.



Ezample 4. Restriction of concurrency on account of restricted resources: one
“task” after another. All behaviors with respect to i € I influence each other.
Let
Spe=5rn@©")71(s) =) (S)n©")71(S)
iel
for I € 1;.

From the automaton in Fig. 1(b) it is evident that 5'{172} will be recognized by
the automaton in Fig. 2(a). Given an arbitrary I € 71, then S; is recognized

az ay aj
~@_0
b2 b1 b’i
(a) Automaton recognizing §{1,2} (b)

Fig. 2.

by an automaton with state set {0} UJ and state transition relation given by
Fig. 2(b) for each i € I. From this automaton it is evident that (S)rez, is a
scalable system [11].

Definition 4 ( (L(L,V)1)rez,). Let 0# L CV C X* be prefiz closed and
LV =) N L)n(©") (V) for T €.
nel
In [11] it is shown

Theorem 2. (L(L,V)r)1ez, is a scalable system.

To consider arbitrary scalable systems (Lj)rez general parameter structures
have to be defined:

Definition 5 (parameter structure). Let N be a countable (infinite) set and
0 #Tc 2N\ {0}. T is called a parameter structure based on N.

Definition 6 (self-similar scalable system). For arbitrary sets I' C I let
I}, X% — X%, with

I N ai|ai€21/
HI/((M){ € | CLZ'EE[\E[/.

A scalable system (L1)rer s called self-similar iff

I, (Lr) = Ly for each I,I' € T with I' C I.



Examples: In [11] it is shown that (S7)7ez, and (S1)rez, are self-similar scalable
systems.

In [10] it is shown that for self-similar scalable systems a large class of safety
properties (uniformly parameterized safety properties) can be verified by in-
specting only one corresponding “prototype system” instead of inspecting the
whole family of systems. This demonstrates the importance of self-similarity for
scalable systems.

The following example shows that not each (£(L,V))ez, is self-similar.

Ezample 5. Let G C {a,b,c}* the prefix closed language that is recognized by
the automaton in Fig. 3(a). Let H C {a,b,c}* the prefix closed language that
is recognized by the automaton in Fig. 3(b). It holds § # G C H, however,
(L(G,€z,,H)1)1e1, is not self-similar, e.g.,

13 E(G Exy H) 1,2,3)) # (LG, €z, H) 2,3) because

a1b1a2a3 € ‘C(Gvgl'lvH){l,Q,?)}v and hence aga3 € ngl:gig} ('C(Gagl—lvH){l,ZS})a

but agag ¢ (»C(G75_217H){2,3}~

C
; O—0O

Fe 00

(a) Automaton recognizing G (b) Automaton recognizing H

Fig. 3. Counterexample

Theorem 3. Let ) # L C V C £* be prefiz closed and (L(L,V)[)rez, self-
similar. Then

oR[(() @)~ HL)n@™) (V) c ™) ~H(v)
nelN

for each subset K C IN.

Proof. Letwe () (TN)~HL)N(ON)~1(V), then there exists J € Iy withw € X%
nelN
and therefore

w e E(L,V)J. (1)

Now
IR (w) = M 1 (w). (2)



If KNJ =0, then
IR (w)=ce (@N) "1 (V). (3)

If KNJ #0, then KNJ €Z;. Now (1), (2) and self-similarity of (£(L,V)r)rez,
implies

IR (w) € L(L,V) ks C (O5)~H (V) c (0M) 1 (V). (4)

(3) and (4) completes the proof of Theorem 3.
In [11] it is shown that

R(( ﬂ (=) n@E™ (V)] € (OF)~H(V) for each subset § #£ K C N
nelN

is a sufficient condition for self-similarity of a large class of scalable systems

including (L£(L,V)r)1ez,. So we define:
Definition 7 (closed under shuffle projection). Let U,V C X*. V is closed
under shuffle projection with respect to U, iff
ORI (@)~ HO)N(@™) (V)] € (ON)™H(V) for each subset § # K C IN.
nelN

We abbreviate this by SP(U,V).
Now it holds
Corollary 1. Let 0 # L CV C X* be prefiz closed. Then SP(L,V) is equivalent

to self-similarity of (L(L,V)1)ret, -
Remark. It is easy to see that in Definition 7 IN can be replaced by any set IV
having the same cardinality as IN [11].

In the last section of this paper decidability of SP(U,V) will be proven
for regular languages U and V. In preparation for this proof and supplementary
to this result, first we investigate sufficient conditions for SP(U, V) and equiva-
lent formulations of SP(U,V).

By simple set theory the definition of SP(U,V) has some immediate con-
sequences:
SP(U,V) implies SP(U’,V) for each U’ C U. (5)

Let @ # I. Then SP(U,V;) for each i € I implies

SP(U,( Vi) and SP(U, | Vi) (6)
el i€l

In [11] the following theorem has been proven:



Theorem 4. Let p: X* — @* be an alphabetic homomorphism and W, X C &%,
then SP(W, X) implies SP(o~1(W),p~1(X)).

Because of (5) and Theorem 4

SP(p(U),V) implies SP(U,p~1(V)). (7)

The inverse of implication (7) also holds. For its proof additional notations and
a lemma is needed:

Let K be a non-empty set. Each alphabetic homomorphism ¢ : X* — ¢*
defines a homomorphism ¢ : Y% — D% by

o (an) == (p(a)), for a, € Tk, where (), :=«. (8)

If 7K. @5 — &* and OK : &% — &* are defined analogously to 7 and K,
then

gpon{(:%focpK, andgpo@K:@KogoK. (9)

Let K C N and J_Yﬁ 1 @ — P}, be defined analogously to H%, then

IV o = Kok, (10)

Lemma 1. Let p: X* — @* be an alphabetic homomorphism, U C &* and N be
a non-empty set, then

NI = N EDHe)).

teN teN

Proof. Because of (9) for x € (N (7¥)~}(U) and ¢ € N holds
teN

N (N () = (7 (2)) € 0(U),

and therefore

M E)THU) € () E) ).

teN teN

The contrary inclusion will be proven by the following proposition:

For y € @4 let T(y) be the finite set defined by T(y) :={t € N | 7" (y) #¢}.
Then for each y € &% and (ut)ien with 7V (y) = o(us), ut ext for teT(y)
and u; = ¢ for t € N\ T(y) exists an z € X% with y = ¢ (z) and 7 () = us

for each t € N.



Proof (Proof of the proposition by induction.).

Induction base.

For y =¢ holds T(y) =0, and x = ¢ satisfies the proposition.

Induction step.

Let y =y'al, € &} with a, € Py and 7V (y) = p(ur) with uy € X for t € T(y)
as well as uy = ¢ for t € N\ T (y).
Then holds s € T(y), because 7 (y)

= S
L]evt now us = ulvl with v, € L1, o, = 7N(a)) = p(v}) # ¢ and u), = ¢ when
T () =e

For t € N\ {s} let uj :=u;.

y' € &% and (up)reny now satisfy the induction hypothesis. Therefore exists
a' € X% with y' = ¢V (2') and 7V (2') = u} for each t € N.

Because of the injectivity of 7 on Efs} exists now exactly one 04 € EEFS} with

N (3g) = vl

According to the definition of ¥ now for @, holds:

N (85) = af, hence N (¢/T5) = N (¢ )" (85) = y'al = y.

Because 7/ (2'0s) = 7V (2') = v} = uy for t € N\ {s} and 7N(2'0s) =
TN (2")7N (05) = wlvl, = us is then x := 2/ a proper x € X% for y =y'al, € &%,
for the induction step. Therewith the proof of the proposition is completed.

From the above proposition follows the inclusion
G @) cM (N )N D)),
teN teN

which completes the proof of Lemma 1.

Theorem 5. Let ¢ : 3X* — &* be an alphabetic homomorphism, U C X* and
V C @*, then SP(p(U),V) iff SP(U,p~1(V)).

Proof.
On account of (7) it only has to be proven that SP(U,o~1(V)) implies

SP(¢(U),V).
For each mapping f: X - Y, AC X and B CY holds
f(A)NB=f(ANf~Y(B)). (11)

Now Lemma 1, (9) and (11) imply

G o) n(©@Y)"H(V)

teN

=" )TN ) THOM) TNV

=N EDHUINE@M) e V)] (12)



for each non-empty set N.

Because of ¢f(w) = pN(w) for w e X} € U4 and 0 # K C N, (9), (10),
(12) and SP(U,p~1(V)) imply

teN
=M )N )N @) e ()
teN
ce™M((OM) e V)
=N (™)1 (@) TH(V))) c (M) (V). (13)

(13) shows SP(¢(U),V), which completes the proof of Theorem 5.

SP(U,V) can be reduced to a simpler condition than Definition 7. For that
purpose an additional notion and lemma is needed.

Generally for a word w € X3 k(w) denotes the smallest subset of N
such that w € Z;:(w). More precisely

k(e) =0 and k(wa) := rx(w)U{i} for w € Xy and a € Xy with i € N, (14)

Lemma 2. Let N be an infinite set, K C N and U C X*. Then
g o)y c @) ).

teN teN
Proof.
If ¢ U, then () (7/¥)~Y(U) =0, and therefore

teN
ng((\ @D wop=0c N HE)HO).
teN teN
Let now e € U, and z € I ( N (77¥)~Y(U)), then 7V (x) =e €U for t € N\ K,
teN
and 7V (z) = 7 (w) € U for we N (7¥)~HU) with I (w) =z and t € K,
teN

which implies z € () (V)71 (U). This completes the proof of the lemma.

teN
Theorem 6. Let U,V € X*, then SP(U,V), iff there exists an infinite countable
set N such that
I3 () DN n @) M) c (M) 1Y) (15)
teEN
for eachm e N.



Proof. Let K C N and w € X%, then by (14) holds

ITi¢ (@) = (i muyyore () = TR gy ) (0)-
Therefore SP(U, V) iff there exists an infinite countable set N such that
I D )@ (v c eV)~H(v) (16)
teN

for each finite subset R C N.

Now it is sufficient to show that (16) follows from (15).

Proof (by induction on the cardinality of R C N ).
Induction base.

(16) holds for R =0.

Induction step.

Let R=R'U{n} with n € N\ R, then

N\{n
H]]\\II\R:HN\\]{%/}OH]]\\’I\{n}‘ (17)

On account of Hﬁ\R,(L) = Ux\\g?}(L) for L C X5\ 1y C 2N (17) implies

IR &) )@ (V)] =

teN

I g N oy () DO N (@) H V)] (18)
teN

By Lemma 2 holds
(o) e &),
teN teN
and therefore
I3 (Y @EDTHONnEN) V) e () () 7HU). (19)
teN teN
Now (15) and (19) imply
I3y () EDTHONN @) TV e () @) HO))n @) 1Y), (20)
teN teN
From (18), (20) and the induction hypothesis it follows

oy () ) Ho)n©eN) (V)]
teN

I\ () ) o) n @)1 (V) c (eM) 1 (v),
teN

which completes the induction step and the proof of Theorem 6.

10



Because of () (tN)~1(U) =0 for U C X*, then trivially holds SP(U,V)
teN
for each V' C X*. Therefore in the following sections we consider SP(PU{e},V)

for P,V C X*.

3 Iterated Shuflle Products

Definition 7 and the examples of scalable systems considered so far are related
to iterated shuffle products.

Definition 8 (iterated shuffle product P"'). For P C X* let

P =N N ()7 (PU{eh)].

telN
PY s called the iterated shuffle product of P.
An immediate consequence of this definition is

P = {e} ={¢e}, Pu{e} c PY and PY Cc L™ for PC L C X*, (21)

For an alphabetic homomorphism ¢ : X* — @* and L C X* holds zy € ¢(L) iff
there exist u,v € X* with z = ¢(u), y = p(v) and wv € L. This implies

@(pre(L)) = pre(p(L) for each L C X*. (22)

where pre(M) denotes the set of all prefixes of words w € M.

As O and 7] are alphabetic homomorphisms, (22) implies

pre(P*) = (pre(P))". (23)

Ezample 6. Let P = {ab}, then aabb € P", because aabb = ON(ajasboby),
T{N(alagbgbl) = T%N(alagbzbl) =abe P and TgN(alagbgbl) =cforte ]N\{l,2}

ajasboby is called a structured representation of aabb.
In this term SP(PU{e},V) is a property of a certain set of structured
representations, which implies

Theorem 7. Let P,V C X*, then SP(PU{e},V) implies SP(P",V).

For the proof of Theorem 7 additional notions and three lemmas from [9] are
needed. Let S and T be non-empty sets. For each ) #£ S’ C S and 0 AT’ C T let

! ! ! /
@g,XT : X% o — X with @g,XT (a(s,p)) = as for each ay ) € Xgryr and

!/ / !/ /!
@%XT XS o — X with Qi,XT (a(s,)) :=at for each a(q ) € Vgryrr.

11



Lemma 3 (Shuffle-lemma 1).

Let S, T be non-empty sets and M C X*, then

NEHeT(NE M) =0T N @33 M),

ses teT (s,t)eSxT

which implies

OS[N ()T (N N AN =e5*T[ N ) ()],
seES teT (s,t)eSXT

because of

05T =0%003"™.

Lemma 4 (Shuffle-lemma 2).
Let S, T be non-empty sets and M C X*. If a bijection between S and T exists,
then ©5[ N (73)~H (M) =0T N ()~ (M)
seS teT
Definition 9 (structured representation).

Let S be a non-empty set and M C X*. For each x € @%[ () (7)1 (M)]
seS
there exists uw € () (72)" (M) such that x = ©°(u). We call u a structured
seS
representation of x w.r.t. S and M.

For x € 2* let SR3;(z) := (©0%)~Ya)n [N (v7)"Y(M)]. It is the set of
sesS
all structured representations of x w.r.t. S and M.

Remark. Now x € PY iff there exists an infinite countable set S with
SR?PU{e})(x) # (). Therefore in Definition 8 IN can be replaced by any infinite

countable set N.

Lemma 5 (Shuffle-lemma 3).
Let S, T be non-empty sets, M C X*, and y € X, p with 5%T(y) € M for each

s,t)
(s,t) € SXT and = QgXT(y) € X, then
Hg,xxg(y) € SR]S(/[XT(QSI(Hg/(x))) for each 0 £ S' C S.

Remark. The hypotheses of this lemma are given by lemma 3.

Proof (Proof of Theorem 7).

Let x € N (2)"Y(PY)N(6°)~1(V), where S is a countable infinite set,
seS

then = € N (#2)7HOT(N (+F)~Y(PU{e}))], where T is a countable in-
seS teT

finite set. By Lemma 3 there exists y € () (T(‘z’xt)T)*l(PU{E}) with
(s,t)eSXT
z =0 (y). This implies y € N (75)) (P U{eh)n(@5T)"1(V)
(s,t)eSXT
because of ©%(z) € V and ©5*T = @SOQ§XT. Now, by the assumption
SP(PU{e},V) holds

Hglqu;(y) e (05*T)Y=1(V) for each ) # S’ C S. (24)

12



As now x and y fulfill the assumptions of Lemma 5, it follows

S *T (5 (y) = 05 (115 (x)). (25)
Because of )
o9 (115, (x)) = ©5 (115 (x))
and

0> T (y)) = 0% T (115 (y)

(24) and (25) imply H:g, (z) € (6%)~Y(V) for each () # S’ C S, which completes
the proof of Theorem 7.

(5), (6), Theorem 4 and Theorem 7 show that in many cases it is sufficient to
prove SP(U,V) for very simple U. On account of our focus on system behav-
ior, we are especially interested in SP(U, V) for prefix closed languages U and V.

In Definition 8 the iterated shuffle product is represented by the homo-
morphic image of a set of structured representations. To get a deeper insight
into the property SP(PU{e},V), in the next section we will represent P by
an homomorphic image of a set of computations of a certain automaton. For
this purpose we need a “bracketed coding” of words.

Definition 10.

Together with an alphabet X we consider four pairwise disjoint copies of
XY, mamely §,~Z°3, Y, ¥, and a homomorphism A : IF o X with 8=
Tux UNfJ W X and A(@) := A(@) := A(a) := A(a) := a for each a € X, where a,
a, a and a are the corresponding copies of a letter a € X.

For words v € P C X7 the four alphabets are used to characterize start-, inner-,
end-, or start-end letters of u.

Definition 11.
Let |x| € Ny denotes the length of a word x € X*, defined by |e| :=0 and |za| :=
|z|+1 forae€ X and x € X*.

The following definition depends on the fact that each u € X* with |u| > 1 can
be uniquely represented by u = awb with a,b € X and w € X*.

Definition 12. B

Let (): X* = {e}UXUXY* X be the mapping defined by ()(¢) :=¢,()(a) :=a for
a € X and ()(awb) := awb for a,b € X and w € X*, where i is defined by € X*
and AN(Ww) =w for each w € X*.

For short we write (u) instead of ()(u) for each u € X*.

For each y € {E}Ufui’f*}:’ holds (A(y)) =y, and for each 2 € X* holds A({z)) =
x. Therefore () is a bijection with

Ot = N(e)ususses and [{w)| = w for each w € X*. (26)

13



The bijection () formalizes the “bracketed coding” of words.

By (26) and (22) holds A((U)) = U and A(pre((U))) = pre(U) for each
U C X*. Therefore Theorem 5 implies

Corollary 2.
For each U,V C X* holds SP(U,V) iff SP(U),A=Y(V)), and SP(pre(U),V) iff
SP(pre((U)), A~ (V).

The following theorem together with its corollary prepares the automata repre-
sentations of iterated shuffle products.

Theorem 8.
Let ¢ : X* — @* be an alphabetic homomorphism and P C X*, then holds

p(PH) = (p(P)™.

Proof.

Let N be an infinite countable set. Let o : X% — &%, 7 : &% — &* and

ON : @4 — &* be defined as in context of Lemma 1. Because of (9) holds
u(P) = NN () ()T (PUieh)]. (27)
teN

From this it follows that p(P") = (u(P))" if the following equation holds:

PN DT P Ulen) = () @) eP)ude)) (28)

teN teN

Proof. Proof of equation (28):
Because of (9) holds

7 (N (@) = o(r (2)) € p(PU{e}) = p(P) U{e}

for each z € N (V)"1(PU{e}) and t € N, which implies
teN

PN TP UL € (G Py ule)).

teN teN

The other inclusion of equation (28)follows from Lemma 1, which completes the
proof of equation (28) and of Theorem 8.

Because of P = A({P)) and pre(P) = A(pre((P))) Theorem 8 implies

Corollary 3.
Let P C X*, then P* = A((P)"), and (pre(P))™ = A((pre({P)))™).

Therefore Corollary 3 reduces automata representations of P rsp. (pre(P))"
to automata representations of (P)"' rsp. (pre((P)))"".

14



4 Automata Representations of Iterated Shuffle Products

Automata representations of iterated shuffle products are well known. See for
example [2] and [6], where multicounter automata are considered. Therefore the
purpose of this section is not to introduce a new automaton concept, but to
establish notions for further investigations of SP(P,V') based on computations
of these automata. On account of Corollary 3 we start with an automaton
representation for (pre({P)))".

Let P C X* and P = (X,Q,6,90,F) be a (not necessarily finite) determin-
istic automaton recognizing P, where § : Q) x ) — @ is a partial function, gg € @
and F' C Q. As usual, ¢ is extended to a partial function § : Q@ x X* — Q. For
simplicity we assume P # () and 6(qo,pre(P)) = Q.

Moreover, we take this set of conditions as a general assumption for the
rest of the paper.

The idea to define a semiautomaton (automaton without final states [1])
P, recognizing (pre((P)))™ is the following: Each computation in P, “corre-
spond” to a “shuffled run” of several not necessarily recognizing computations
in P, which we call “elementary computations”. For each q € @ the states of P
store the number of “elementary computations” which just have reached the
state ¢ in such a “shuffled run” of “elementary computations”.

Formally, the state set of Py, is ]NOQ, the set of all functions f :@Q — INy.

Let 0 € N9 be defined by 0(q) :=0 for each g € Q. For g € @ and k€ N
0

let ky € N be defined by kg () := {]8 i i:g)\{q} ‘

For f,g € ]Ng2 let

— f2giff f(z)>g(x) for each x € Q,
- f+yge€ ]N((’)? with (f +g¢)(x) := f(z)+g(x) for each z € @, and
— for f > g, ffgelNé2 with (f —g)(x) := f(x) — g(x) for each z € Q.

The state transition relation Lip of [APM is composed of four disjunct subsets
whose elements describe

— the “entry into a new elementary computation”,

— the “transition within an open elementary computation”,

— the “completion of an open elementary computation”,

the “entry into a new elementary computation with simultaneous completion
of this elementary computation”.

Definition 13 (S-automaton P)).
P, = (Z:‘,]I\I(?,LT_IP,O) w.r.t. P is a semiautomaton with an infinite state set ]NOQ,
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the initial state 0 and a state transition relation 1ip C ]Ng2 x 3 x ]NOQ defined by

Wp :=0p U p U Wp U G_I[P with
We :={(f,z,f+1p) € ]NOQ x X x ]Ng2 | (g0, A (z)) =p and it exists b€ X such
that §(p,b) is defined},

We :={(f,z,f+1,—14) € ]Ng2 x 3 x ]Ng2 | f>14,6(q,A(z)) =p and it exists
be X such that 6(p,b) is defined},

We :={(f,z,f—14) € ]NOQ x X x ]NOQ | f>14 and 6(¢,\(z)) € F'} and
Wp :={(f,,f) € N? x £ xN& | 6(qo,A(z)) € F}.
Generally P., is an infinite nondeterministic semiautomaton.

Ezample 7. P = {abc,abbc} Two computations in P,

_)@a@b?c@
b

C

Fig. 4. Automaton P recognizing P

a b a b
0" 1 — g == g+ g — 1y + g1

a b a b
0— 1 — lin — Lo+ 1o — 2m1- -

fl[p C LT_IE; denotes the set of all paths in DA’LU starting with the initial state 0 and
including the empty path ¢. For w € fl[p, Zp (w) denotes the final state of the
path w and Zp (e) :=0. Formally the prefix closed language Ap and the function
Zp: Ap — ]N((‘;2 are defined inductively by

ecAp, Zp(e) =0, w(f,x,9) € Ap and Zp(w(f,z,9)) =g (29)
for w e Ap, Zp(w) = f and (f,z,g) € Lp.
Let the function ép : Ap — £* be inductively defined by
ap(e) :=¢ and ap(w(f,z,9)) := ap(w)x (30)

for w(f,z,9) € Ap and (f,z,g) € Ulp. ap(u) is called the label of a path .
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Definition 14.
Let N be an infinite countable set. For I' CI C N and t € N let Yy =

i‘{t} U Zc‘{t} U Z_‘{t} U Z:‘{t} s 7A'tI : ZA‘; — ZA‘*, o ZA‘; — 5* and ﬁll, : ZA“; — ZAUIK,
be defined according to the definitions of ¥, Xy rl, 61 and HII,, where

Sr= U Sy,
sel
The key to prove that Py, recognizes (pre((P)))Y =ON[ N (#N)~(pre((P)))]
is to define an appropriate function ép : () (7Y )_1(pre(t<€]-']’\;)) — Ap. For that
purpose we first consider the function 7ip fejf\%N(?tN)_l(pre(<P>)) — ]Ng?, defined
te
by

iip(2)(q) = #({t € N | 8(q0, A(7" (2))) = q and 7" (2) ¢ (P)U{e}})  (31)

for each z € N (#¥)~(pre((P))) and ¢ € Q, where #(M) denotes the cardi-
teN
nality of a set M.

As in (23) it holds

pre( () (F) T ((PU{el) = () ()~ (pre((P))). (32)

teN teN
This shows that () (7t)~!(pre((P))) is a prefix closed language.
teN
The following property of 7ip is the key for the definition of ép.

Lemma 6.

Let xa € () (7))~ L(pre({(P))) with a € X, then (ip(z),0N (a),7p(za)) € ip.
teN

Proof.

For I C N an immediate consequence of Lemma 2 and the definitions of np and

LT_I[P is

[ G Here((PY))] € () () pre((P)N 27, (33)
teN teN
ip () = g (1T} (2)) + (T, (2)) for & € () (7))} (pre((P))) and ~ (34)
teN
(f,b,g) € tp implies (f +h,b,g+h) € p for h € NS. (35)

For za € () (7))~ '(pre((P))) there exists s € N with a € fj{s}, and
teN

17



therefore IAY]]\\,T\{ }(xd) = ]AT]J\\;\{ }(J:) Now by (33) - (35) it is sufficient to prove

the lemma for za € () (7)™~ 1(pre(<P>))ﬂZ{S} = (7. {S}) L(pre({P))), where
teN

TS{S} : E{S} — X* is a bijection.

For w € (#3°1) =L (pre((P))\ (P)U{e}) holds ftp (w) = 1,4, with 8(go, A(74* (w))) =

q and for w € (7 {S}) t(pPyu {5}) holds 7p(w) = 0. Therefore the definition of
[p immediately implies (7p(z), ON (a), ip(zd)) = (fp(z), 725 (4), e (2d)) € Lp
)Y pre((P)

for za € (7 )), which completes the proof of the lemma.

Lemma 6 makes the following definition sound:

Definition 15. A
Let the function ¢ép = () (FN)"Hpre((P))) — Ap be inductively de-

teN
fined by ép(e) == e and ép(xa) = ep(x)(hp(x),ON(a),np(za)) for

za € N (?tN)*l(pre_(<P>)) with a € Sy
teN

This definition immediately implies

Theorem 9. Let x € () (7))~ (pre((P))) then

teN
Zp(ép(x)) = g (), (36a)
ap(ep(z)) = ON (2), (36b)
|ép(z)| = |=|, and (36¢)
pre(Cp(x)) = ép(pre(z)) (36d)

To prove surjectivity of ép we need a counterpart of Lemma 6:

Lemma 7. Let c(f,b,g) € Ap with (f,b,g) € ip, andw e () (#N) " (pre((P)))
teN
with ép(w) = c.

e Xy i’, then for each & € ﬁ’N\,{(w) with ON(a) = b holds
ﬂ (7#V) " (pre((P))) and ép(wa) = c(f.b,g).

A

EN
If b € YUX, then there exists a € Y(w) with ON(@) = b such that
ae () (#V) " (pre((P))) and ép(wa) = c(f.b,g).

If b
a €

=

teN

Proof.
By the definition of Lilp each (f,ls,g) € WpUWLWp can be represented by

(fai)mg) = (f767f+h’) with (Oal;7h) € LT—'[PULT—'[Pa (37)
and each (f,@,g) € lWpULLp can be represented by

(f,0,9) = (f' +14,b, f' + k) with ¢ € Q and (14,b,k) € LpULp.  (38)
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In these representations h is uniquely determined by b, and k is _uniquely deter-
mlned by ¢ and b. More precisely: There exist partial functions dp : U — ]NQ
and 6[p Qx (XuUX) — ]Ng2 such that

(0,b,h) € Wplp iff h = op(b), and (14,b,k) € Wplilp iff k = dp(g,b). (39)

Let wae () (7)1 (pre((P))) with ON(a)=be UZ then a € EN\R(UJ) Now
teN

(34) and the definition of g[p imply

fip (wa) = fip (w) + 6p (b). (40)

Let wa e () (7)1 (pre((P))) with &N (a) = b € XWX, then there exists s €
teN
r(w) such that 7N (w) # e and 7N (w)b € pre((P)). Now (34) and the definition

of 0p imply
e (wit) = g (T, 3 () + 5o (80, AN (1)), B). (41)

Let b e SWUX, then (f,b,g) = (f,b, f +dp(b)) € WpWilip implies b € pre((P)), and
therefore w € () (7)™ (pre((P))) implies
teN

wa € m #N)~Y(pre((P))) for each 4 € ZAJN\,{(H,) with O (a) =b. (42)
teN

Now (37), (39), (40) and (42) prove the first part of Lemma 7.
Let b € YUY, and let (f,l;,g) € lpUlLp be represented by (f,IA),g) =

(f + 1q,13,f’ + 0p(g,b)) with ¢ € Q. On account of f’+ 14 = np(w), there
exists s € k(w) such that [/ = fzp(ﬁ%\{s}(w)), #N(w) ¢ (P) U {e}, and

(QO7 (#N (w))) = q. Therefore by (f 4 14,b,f" 4 dp(q,b)) € Wplilp holds
#N (w)b € pre((P)), which implies
wa € ﬂ L(pre((P))) for 4 € ff{s} with O (a) = b. (43)
teN

Now (38), (39), (41) and (43) prove the second part of Lemma 7.

Generally, for L C X* and o € X* the left quotient x~1(L) is defined by
e~ YL):={ye X*xyc L}. (44)

By induction on the length of ¢ € Ap Lemma 7 implies
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Theorem 10.

ep| ﬂ (#N)~Y(pre((P)))] = Ap.  Moreover (45a)
teN
eplr(@ () ()~ (pre((P))])] = ép () [(ép () ™" (Ap)] (45b)
teN
for each x € () (7))~ (pre((P))).
teN

On account of (36b) now from (45a) it follows

Corollary 4.
(pre({P)))™ = &p(Ap), which states that the semiautomaton P, recognizes the

prefiz closed language (pre({P)))".
Because of
@) (P u{eh) =
teEN
{z e ﬂ (N L (pre((P))) | 7N (z) € (P)U{e} for each t € N} =
teN
{we (Y E) " (pre((P))) | Ap(z) =0},
teEN
it holds
G H(P)U{e}) = iy H(0). (46)
teN
Therefore (36a) and (45a) imply
ep[ () (V)T U(PYU{eN] = Z 1 (0). (47)
teN

Now, from (47) and (36b) it follows

Corollary 5. R

(P)Y = ap(Zp1(0)), which states that the semiautomaton P, enriched by the
final state 0 € ]Ng? recognizes (Py%.

Let A be an automaton recognizing L C &* and let ¢ : &* — I'* be a strictly
alphabetic homomorphism, where strictly is defined by |p(w)| = |w| for each
w € ¢*. Then it is easy and well known to construct an automaton A’ recog-
nizing ¢(L) C I'*. Now this construction will be realized for the semiautomaton
P., and the strictly alphabetic homomorphism A : PSS 3. Additionally this
construction will be extended to a modification of the function ép.

Definition 16 (S-automaton Py,).

P, = (Z‘,]NSQ,LLIP,O) w.r.t. P is a semiautomaton with an infinite state set ]NOQ,
the initial state O and a state transition relation LWp C ]Né2 X X X ]N(Cj2 defined by
W == {(f,A(@),9) € NG x Zx NG | (f,a,9) € dp}.

20



Adopting the notions of S-automata, Ap C Ly denotes the set of all paths in
P, starting with the initial state 0 and including the empty path . For w € Ap,
Zp(w) denotes the final state of the path w and Zp(e) := 0. Formally the prefix

closed language Ap and the function Zp : Ap — ]N(? are defined inductively by
e € Ap, Zp(e) =0, w(f,a,9) € Ap and Zp(w(f,a,g)) =g (48)
for w e Ap, Zp(w) = f and (f,a,9) € Wp.
Let the function ap : Ap — X* be inductively defined by
ap(e) :==¢ and ap(w(f,a,9)) := ap(w)a (49)
for w(f,a,g) € Ap and (f,a,g) € Wp. ap(u) is called the label of a path u.

To formally capture the relation between P, and P, we consider the
homomorphism

Ap g — Wi with Ap ((£,a,9)) == (f,A(@),g) for (f,a,9) € Wp. (50)

This definition implies

Ap is strictly alphabetic and surjective. (bla)
Ap(y) € Ap iff y € Ap for y e Wp. (51b)
Zp(z) = Zp(Ap(z)) for = € Ap. (51c)
A(ép(z)) = ap(Ap(z)) for z € Ap. (51d)

Now the composition of ép with Ap attunes ép to Py.

Definition 17.

Let the function cp : () (7))~ (pre({P))) — Ap be defined by cp := Apoép.
teN

By Corollary 3 and (51a) - (51d), Corollary 4 and Corollary 5 imply the following
automata representations:

Corollary 6. (pre(P))" = ap(Ap) and PY = ap(Z; *(0)).
For use in the next section the following theorem assembles the properties of the

function cp, which follow from (51a) - (51d), Theorem 9 and Theorem 10:
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Theorem 11. Let x € () (7)1 (pre((P))) then

teN
Zp(cp(2)) = np (), (52a)
ap(cp(z)) = AN(ON (2)), (52b)
ep ()| = al, (520)
pre(cp(z)) = cp(pre(z)), and (52d)
)

cple(@ [ (7)™ (pre((P))])] = cp(@)[(cp ()~ (4p)], (52e

teN
which implies

cp[ () (V) (pre((P)))] = Ap. (52f)

teN

5 Shuffle Projection in Terms of S-Automata

To express shuffle projection in terms of S-automata we first consider shuffle
projection w.r.t. prefix closed languages. Let therefore P,V C X*, P # () and let
P be an automaton for P as in Section 4. By Corollary 2 together with Theorem 6
holds SP(pre(P),V) iff there exists an infinite countable set N such that
1%, oy [ E) ore((P) N (ON) LA (V)] € (OM) 1 (A~ (v)) (53)
teN

for each r € N.
The same argument as to prove (20) shows that (53) is equivalent to

Iy s () G Here(P)) NOM) 1A (V)] €
teN
(N G pre((P)NON) T ATH(V) (54)

teN

for each r € N.
oy . . AN —1
Condition (54) is a saturation property of (Ao @‘ N (-?tN)—l(pre(<P)))) )
teN
wrt. a binary relation on [ (#¥)~!(pre((P))) defined by the homomorphisms
teN

TN fcalve
HN\{T} for r € N. More precisely:

Let R C F x F be a binary relation on a set F' and let W C F. The sat-
uration property S(W, R) let be defined by

S(W,R) iff x € W and (x,y) € R imply y € W. (55)
Let f: F— G, g:G— H and V C H, then (55) immediately implies
S((go /)"H(V),R) iff S((9~ (V). (f @ f)(R)), (56)
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where f® f: FxF — G x G is defined by (f® f)((z,y)) = (f(x), f(y)) for
(x,y) e Fx F.

Definition 18.

Let Rp = {(z,y) € () (7))~ (pre((P))) x (1) (#{) " (pre((P)))

teN teN
there exists r € N with y = ]AY]]\\,[\{T} ()}

Now by (53) and (54)

: AN -1
SP(pre(P),V) iff S((/\o@‘ N (%t]\’)—l(pre((P)))) (V),Rp). (57)
teN
. AN _
On account of (52b) holds /\o@| N )1 (pre((Py)) = P O CP- Therefore (56)
teN

and (57) imply
SP(pre(P),V) iff S(ap *(V),(cp @ cp)(Rp)). (58)

In Section 4 the idea to define P, was the following: Each computation in P
“correspond” to a “shuffled run” of “elementary computations”. Now we will
show that (u,v) € (cp @ cp)(Rp) C Ap x Ap iff the “shuffled run” v’ of “ele-
mentary computations” is generated from the “shuffled run” u’ of “elementary
computations” by “deleting” one of the “elementary computations” in u’, where
u “correspond” to u’ and v “correspond” to v’. The formalization of this idea
will result in a characterization of (cp ® cp)(Rp) C Ap x Ap without explicit use
of RP.

First we have to formalize “elementary computations”: For each r € N
holds (7))~ (pre(P)) € N ()~ (pre((P))) and ce (7))~ (pre((P)))) =
€

cP((%;{s})_l(pre((P»)) for each s € N. Therefore the following definition does
not depend on r € N.

Definition 19.
Let r € N. The prefix closed set Ep := c[p((ﬁ{r})*l(pre(<P>))) C Ap is called the
set of elementary computations in P;.

O
—
Fig. 5. Automaton P recognizing P = {ab}

Ezample 8.
Let P and P be defined as in Fig. 5, then Ep = pre({(0,a, 111)(111,5,0)}).
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Ep can also be characterized without referring to cp:

Ep =pre({ce Zz 1 (0)nag ' (P)|Zp(d) = L5(qo,ap (') for each
¢’ € pre(c) with 0 < |¢'| <|c|}), which implies
ap(Ep) = pre(P). (59)

To formally define shuffled runs and corresponding representations, let Y bea
disjoint copy of X and i : ¥* — X* the corresponding isomorphism. This isomor-
phism defines a deterministic automaton P isomorphic to P with the same state
set as P and recognizing I~ (P). More precisely: Let P := (3,Q,8,qo, F), where
P=(X,Q,4,q,F) and S(p, a) :=4d(p,i(a)) for a € Y and p € Q. This definition
implies

(f,,9) € Wy iff (f,1(d),9) € Wp for f,g € N and a € 2. (60)

Therefore
ZLLIP((fvévg)) = (f?z(é‘)hg) for (f’d’g) € Wp (61)

defines an isomorphism 7, : LWg — Wp with

i (A) = A, (620)
s, () = B, (62b)
Zp = Zpoly|a,, and (62c)
loap=apoly|a,- (62d)

Because of XN X =0, it also holds We Np = 0.

Let therefore mp : (WpUWLp)™ — Wp be defined by

T (y) ==y for y € Wp and 7, (y) := € for y € L.
In the same way let . : (LWpWLLp)™ — L be defined by
T (y) == ¢ for y € Wp and my,, (y) ==y for y € Wp.

As Ap C Wp and Ep C WY are prefix closed languages, 7T|_T_|:> (Ap) ﬂTl'uj;) (Ep) C
(WpWLR)* is also a prefix closed language. Its elements are called shuffled

runs of a computation in P and an elementary computation in P. Let now
Bp : (LLI[PULLI";)* — X* be defined by

B[P((f’x’g)) :
5D’((f7'r’g)> :

x for (f,x,g) € Wp and
i(z) for (f,z,g) € W. (63)
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A shuffled run b € 7,0 (Ap) ﬂmj_é (Ep) is called a shuffled representation of c € Ap
by d € Ap and e € Ej iff

or (c) = (1), (612)
T, () = ¢, (64b)
e (b) =d, and (64c)
Zp(c') = Zp(mu, () + Zp (e (V')

for each ¢’ € pre(c), where b’ € pre(b) with |b'| =||. (64d)

Ezample 9.
Let P and P be defined as in Fig. 5, and

d= (0,(1, 111)(1117b70) (070‘7 111)(11171)70) € A[P?
e= (0767111)(111’6’ 0) € E[I57
b= (O,a, 111)(0,517 111)(1117b,0)(0,a, 111)(111,5, 0)(111,b,0) S WL}P (A[P) ﬂﬂ—LT_I;«, (E[p)

and

¢=(0,a,1m) (L, a, 211) (211, b, 1) (L, @, 211) (211, b, 11) (111, 0, 0) € Ap,
then b is a shuffled representation of ¢ by d and e.

The shuffled representations define a relation Rp C Ap X Ap:

Definition 20.
Rp := {(c,d) € Ap x Ap| there exists e € Ex and a shuffled representation b €
T (Ap) ﬁﬁ[_l; (Ep) of ¢ by d and e}.

Now we will prove Rp = (cp @ cp)(Rp). For this purpose we define an appropri-
ate function bp : N x () (7))~ (pre((P))) — T (Ap) ﬂﬂ‘u:; (Ep). For it we first
teN
need a unique factorization property of the elements of () (#¥)~!(pre((P))):
teN

Let we () (#N) " Ypre((P))), 7 € N, z = ﬁg}(w) and y = ﬁg\{r}(w).
teN R
Then there exists exactly one yg € 2]*\,\%}, and for each i € {1 € N|1 < < |z|}

exactly one x; € f){r} as well as exactly one y; € ff}k\,\{r} such that

w=y=uyg forx=¢, and

W= YoT1Y1-+-T|3|Y|a|, T = T1...T|y| as well as y = yoy1...y|, for v #e.  (65)

Because of [cp(x)| = |a], |ep(y)| = |y| and [, (w) = (21" 71 (2N (w)), which
implies cp(z) € Ep, the following definition is sound:
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Definition 21.
Let r, w, z, y, and the factorizations of w, x and y as in 65, then

bp: N x [ (7)) (pre((P))) — g (Ap) N (Ep) s defined by
teN

bp((r,w)) :=cp(y) for x =¢ and bp((r,w)) := vourv1...u|5|V|y| for x #e,

where uy...u|, = 7t (cp(z)), VU1 V)z| = cp(Y), |wi| = |zi| and |vg| = |yx| for
1<i<|z| and 0 <k < |x].

By this definition c¢p(y) and Z[u; (cp(x)) are shuffled in bp((r,w)) in the same
manner as y and x are shuffled in w, which implies

[bp ((r,w))] = [wl, (66)
and moreover
be (1)) € mL (ep (LR gy () 7L (2 (cp (1T (),
(IR g1y (w")] = [ (O)] and [ (w")] = |, (6)]
for each w’ € pre(w) and b’ € pre(bp((r,w))) with |w’| = [b']. (67)
It is easy to see that 67 characterizes bp((r,w)). More precisely:
(e ((raw))} = {b eml (ea (R, g () N (L (ep (1Y () |
IR gy (@) = e (0)| and [T (w)] = |, (8)]
for each w’ € pre(w) and b’ € pre(b) with |w’| = [b|}. (68)

Now (68) and Theorem 11 together with (34), (62¢), (62d) and (63) imply

pre(bp((r,w))) = be ((r, pre(w))), (69)
N(ON (w)) = Br(bp((r,w))) and (70)
fip(w) = Zp (muw, (bp ((r,w)))) + Zp (T (bp ((r,w)))) (71)
To complete the list of properties of bp we will show
be (N x () (#) " (ore((P)))) = 7ok (Ap) Nl (). (72)
teN

Proof. Proof of equation (72):

Let b € W[J;(A[P)HWLT_';(EDS). Because of (52f), Definition 19 and (62b)

there exist y € 1tQN(ﬁV)_l(pre(<P>)) and & € pre((P)) such that cp(y) = mup (b)

and I (c[p(( S}) L(#))) =, (b) for each s € N.
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Let now r € N\ {k(y)}, then by the same argument as in (65) and in (67) y and

(7, {T}) 1(#) can be shuffled in the same manner as 7, (b) and Ty, (b) are shuf-
fled in b. This result in w € () (7))~ (pre((P))) with ( 1:{1"}) L) = gﬂ} (w),
teN

= T 0y 0, TN,y )] = [y ()] and S )] = [, ()] for each
w’ € pre(w) and ¥ € pre(b) with |w’| = [b'|. Now by (68) bp((r,w)) = b, which
completes the proof of equation (72).

To prove the main theorem of this section, additionally to (66) - (72) the following

characterization of equality in Ap is needed, which is an immediate consequence
of the definitions in (48) and (49):

Let u,v € Ap, then u=v iff ap(u) = ap(v) and Zp(u') = Zp(v')
for each v € pre(u) and v’ € pre(v) with |u'| = [v/|. (73)

Theorem 12. Re = (cp®cp)(Rp)

Proof.

Let (w,y) € Rp, thenwe () (7))~ (pre((P))), and there exists r € N such that
teN

= ]AY]J\\,]\{T} (w). By (67) - (71) and Theorem 11 together with (34) bp((r,w)) is
a shuffled representation of cp(w) by cp(y) and ZU_JP (cp((7: {s}) 1(2))). Therefore
(cp(w),cp(y)) € Rp, which proves (cp ® cp)(Rp) C Rp.

To show the contrary inclusion let (c,d) € Rp. Then there exists e € Eg
and a shuffled representation b € WL;(AP)OWL;(EP) of ¢ by d and e.
By (72) there exists w € () (#¥) '(pre((P))), and r € N such that

teN
b= bp((r,w)). Now (68) - (71) and Theorem 11 together with (73) imply

(c.d) = (ep(w),ep (TN, 1y () = (cp ® co)(w, [T, 1,y () € (cp & cp)(Rp).
Therefore Rp C (cp @ cp)(Rp), which completes the proof of Theorem 12.

Now we consider shuffle projections w.r.t. arbitrary languages. Therefore in Def-
inition 18 pre({P)) has to be replaced by (P)U{e}. So on account of (46) we
define:

Definition 22. .
Let Rp :={(x,y) € fig *(0) x g *(0)|there exists 7 € N with y = H]]Q,I\{T}(x)}.

Because of ﬁ%\{r} (2p 1 (0)) € 2p 1 (0) it holds

Rp =RpN (g (0) x7p(0)). (74)
Now by the same argument as in (57)
SP(PU{e},V) iff S((/\o@‘ ,1(0)) YV),Rp). (75)
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On account of (52b) holds AoON L. =apoc

_ Therefore (56) and (75)
(i (V)

Plag ' (0)°
imply .
SP(PU{e}, V) iff S(Oz[gl(V), (C[pmu;l(o) ®c[pmu:1(0))(RP))a

and because of (C[Pm[;l(o) ®cu,lﬁu:1(0))(7°2p) = (cp®cp)(Rp)

SP(PU{e}, V) iff S(ap (V) (ep @ cp) (Rp)). (76)

Theorem 12 allows to characterize the relation (cp® c[p)(fz p) C Ap x Ap without
explicit use of Rp:

Corollary 7. (cp®cp)(Rp) =Re N (Zp 1(0) x Z5 1(0)) =: Rp.

Proof.
(52a) (74) and Theorem 12 imply

g (0) x At (0))] =
5 (Zp1(0) x g (2 1(0)))] =
cp ®ep ) (Zp 1 (0) x 251 (0))] =

which completes the proof of Corollary 7.

Considering the powerset 2", a binary relation R C F x F defines a function
R :2F 5 oF by
R'(U) := {y € F|there exists = € U with (x,y) € R} for each U € 2", (77)

It is an immediate consequence that

R(U)=|J R({z}) foreach U € 2", (78)
zeU
Now,
S(W,R) iff R'(W) C W, for each W e 2% (79)

Applying (79) to (58) and Theorem 12 result in

Corollary 8.

SP(pre(P),V) iff Rp(ap ' (V) C ap (V).
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Corollary 7 implies
R'p(U) = Re(UNZz 1(0)) N Z5 1 (0) for each U C Ap. (80)
On account of (64d) holds
Re(Z1(0) € Z51(0), (81)
and therefore by (80)
R'p(U) = Rp(UNZg 1(0)) for each U C Ap. (82)
Now from (76), (79), (81), and (82) it follows
Corollary 9.
SP(PU{e},V) iff Rp(ap (V)N Z51(0)) Cap' (V)
iff Rp(az (V)N Z5H(0)) C ax ' (V)N Z5H(0).

6 Construction Principles

Under certain conditions for a fixed language P Corollary 8 allows to construct
a variety of languages V' such that SP(pre(P),V). The key to such constructions
is the following implication of (64d):

Zp(pre(Rp({c}))) C U {fe ]NOQ|f < Zp(z)} for each ¢ € Ap, (83)
zEpre(c)
where Q is the state set of P.

Definition 23 (initial segment).
0£1IC ]Ng’) is called initial segment iff r <s € I implies r € I. For each initial
segment I, let A(;py :={c € Ap|Zp(pre(c)) C I}.

It holds () # A(; p) = pre(A(s p))-

Definition 24.

An initial segment I is called compatible with P iff A py is saturated by the
partition of Ap induced by ap. Le. c¢,c’ € A py and ap(c’) = ap(c) implies ¢’ €
A(r,p)- For an initial segment I compatible with P, let L(;py:= ap(A(1p))-

By this definition () # L(; py C (pre(P))™ and L(; py = pre(L(; p))-

Theorem 13. Let ) # P C X* and I an initial segment compatible with P, then
SP(pre(P), L1 p))-

Proof. On account of Corollary 8 and (78) it is sufficient to show
Re({c}) C oz[gl(L(L[P)) for each c € agl(L(LP)). (84)
Since the initial segment [ is compatible with P it holds
o7 (Lire)) = o € Ap|Ze(pre(a))  I}. (85)
Now (83) and (85) imply (84), which completes the proof of Theorem 13.
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An immediate consequence of Definition 24 is

Lemma 8. An initial segment I is compatible with P iff for each c,¢ € A p)
with a(c) = a(¢), and for each (Zp(c),a,f) € Wp and (Zp(&),a, f) € Wp holds
ferliffel.

The condition of Lemma 8 can be checked by a partial powerset construction on
Py,. For this purpose let the partial function Dz p) : 27 x ¥ — 21 be defined by

D p)(M,a) :={f € ]NOQ| there exist g € M and (g,qa, f) € Wp}
for each (M, a) € 21 x ¥ with
0+ {f € N§| there exist g € M and (g,a, f) € Wp} C I. (86)

The partial function D(; p) defines a deterministic semiautomaton

Pup) = (2,21, D1 p),{0}). (87)
Now Lemma 8 implies

Theorem 14. An initial segment I C ]Né2 is compatible with P, iff
for each a € X and M € 2! reachable in P(1,p) either D(L[p)(M@) is defined, or

{fe ]Ngg| there exist g € M and (g,a, f) € Wp} C ]NOQ\I.
In that case Py py recognizes L1 p).

Ezample 10. ~
Let P= {abc}, P as defined in Fig. 6, and I = {O, 1rr,17171, 1[[—|—1[[]}. The partial

_)@a@b@c@

Fig. 6. Automaton P recognizing P

powerset construction result in the semiautomaton 73( iB) of Fig. 7, which fulfills

the conditions of Theorem 14. Therefore I is compatible with P, which implies

SP(pre(P), Lj 5))-
It is an immediate consequence of Definition 16 that

Ze(Ap) C T(Q) = {f € N9|{q € Q|f(q) #0} is a finite set.} (88

for each deterministic automaton P with state set @) (not necessarily finite).

There are special initial sections I C T(Q) and automata P with state set
@, such that compatibility of I with P can be verified easily:

For f € T(Q) let [|f]|:=>_ f(q) € No. (89)
q€Q
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{1 + 11}

Fig. 7. Semiautomaton P(f B) recognizing L(f P)

For n € No let K(n,Q) := {f € T(Q)[|[f]| <7}, (90)

which is an initial segment.

Theorem 15.

Let @, ', and £2 be pairwise disjoint sets, ) £ P C IT'UPT™* (2 and P be a deter-
ministic automaton with state set Q) recognizing P. Then K (n,Q) is compatible
with P for each n € No, and therefore SP(pre(P), L( (n,Q)p))-

Proof.
From Definition 16 it follows for each (f,a,g) € Wwp

a € @ implies [|g] = | £]|+1,
a € I implies g = ], and
a € © implies [lg = |If]| - 1. (91)

Therefore
f,f" € M implies || f|| = || f'|| for each state M reachable in P((y,0),p)- (92)
Now (91) and (92) together with Theorem 13 completes the proof.

Ezample 11.

Let P and P as defined in Figure 8. Then by Theorem 15 K(n,Q) is com-
patible with P for each n € Ny, where Q is the state set of P, and it holds
SP(pre(P), L (n.G),¢)) for each n € No.

O———
.
Fig. 8. Automaton P recognizing P := {ab}

Figure 9 shows the semiautomaton Py, 5y p)-
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~_b - @

\b_/ \_b/
Fig. 9. Semiautomaton recognizing L(K(n Q),P) for each n € INg
a

-0 (@)

b

Fig. 10. Automaton P recognizing P

The following example is a bridge to the next section.

Ezample 12.
Let P and P as defined in Fig. 10. It holds Zg(Ag) = {0} U{n11|n € IN}. Therefore,

ab e L(i,u%) implies ba € L(f,[f’) for each initial segment I compatible with P.

c
b
c a c b
b
Fig. 11. Semiautomaton \% recognizing 1%

Let the prefix closed language V be defined by the semiautomaton in Fig. 11.
Because of ab€ V but ba ¢ V, V cannot be represented by V = L(ju P) with
V7

an initial segment Iof/ compatible with P. So SP(pre(P),V) cannot be shown
by theorem 13. But in the next section a method will be developed to prove

o

SP(pre(P),V).

7 Representation Theorem
In this section a representation of Rp will be developed, which shows certain

restrictions of Rp to be rational transductions [1]. More precisely: Depending
on a subset A C LUp, an alphabet A0 and a prefix closed language Wa C AO*
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will be constructed, which represents the function R[’P |2ApnA® in the following
manmner:

There exist two alphabetic homomorphisms za : AO* — A* and v : AO* — LLg
such that for each ¢ € Ap N A* it holds,

d € Rp({c}) iff there exists x € W, with ¢ = pa(z) and d = va(z),
which is equivalent to
Rp(B) =va(ux'(B)NWa) for each B C Ap N A*, (93)
Additionally, it will be shown that
WA is regular if A is finite. (94)

In that case REP|2AEP”4* is a rational transduction [1].

On account of (88) it can be assumed
ACwpN(T(Q) x X xT(Q)). (95)

The construction of W, is based on the following idea: Each © € WA uniquely
describes a shuffled representation b of c € ApNA* by d € Ap and e € E as
defined in (64). This description is structured into three tracks, respectively one
for ¢, d, and e. Additionally the second and third track describe the position of
d and e in b such that both tracks together represent b. These three tracks will
be formalized by three components of the elements of A0,

By an appropriate definition of AO, WA can be defined as a local prefix
closed language [1]. So W will be defined by AOQ | the set of initial letters of
its words and the set of forbidden adjacencies of letters in its words. Generally,
local languages with a finite alphabet are regular languages [1]. Starting basis
for this are the definitions of Ap N A* and Ep as local prefix closed languages:
(48) imply

ApNA* =
({e}U{(f.a.9) € Alf =0} A\ A™{(f.a,9)(f',d'.g") € AA|g # ['} A" (96)

With WE = {(f,a,9) € wp|f,g € {0} U{1, € N§|q € Q}} (59) imply

B = ({e}U{(f,a,9) € WE|f = 0huE™)\

W {(f,0,9)(f',0,9) € WE Wi g # ' or g =0} g™ (97)
To achieve (93) and (94), WA has to be defined in such a way, that for each
x € W the corresponding ¢ and d can be extracted from = by alphabetic homo-
morphisms, and that finiteness of A implies regularity of Wa. For formalization

let
A0 € A0 = A x A@) 5 AB), (98)
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where A is the alphabet for representing ¢ € Ap N A*, and A2 x A®) is the
alphabet for representing b € 7! (Ap) ﬁwuj;(ED;), the shuffled representation

of ¢. This is possible, since |¢| = |b| because of (64a).

In that representation A is the alphabet for representing d = e (b) € Ap
as well as for describing the positioning of d inside b. A®) is the alphabet
for representing e = Tl (b) € Eg as well as for describing the positioning of e
inside b. Additionally it should be noticed that each b € (LpWULg)* is uniquely
determined by mup (b), 7y, (b) and by the information, which positions of b
contain elements of Lip and which positions contain elements of LLg.

As AW is the alphabet for representing ¢ € Ap N A*, let
AW = A, (99)
and let <p(Al) : A0 5 AM* be the homomorphism defined by

wg)((xl,xg,xg)) :=ux for (x1,29,23) € A0 (100)

Then cpg)(x) € ApN A* should hold for each 2z € Wa.

Let now the mappings wg'l), <p(Al'2) and @S'B) be defined by

QY AL S NG with o4V ((f,a,9)) = 1, (101)

A0 AD L 5 with oD (frag) = a, (102)
and 1.3 1.3

P4 AM 5 NG with o4 Y ((f,a,9)) =g (103)

for each (f,a,g) € A,
Then (96) becomes
Apn A" = ({e}U (e )71 (0) AW )\ AW FO) AW

with
FO = fay € AO AL 0D @) £ o0V ()} (104)

Therefore go(Al)(WA) C ApNnA* if
oV Wa) c ({3U (G )71 (0) AW\ A M AW, (105)

With two further conditions similar to (105) and additional restrictions of the
alphabet A0 the language W will be defined. But first the sets A and A®)
have to be defined.
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Since the elements of W, particularly have to represent condition (64d)
let

SW = Zp(Apn a®), (106)
Sg’) ={f € Zg(Eg)| there exists g € S(Al) with f < g}, (107)

and
S(A2) :={f € Zp(Ap)| there exists g € S(Al) and h € S(AB) with g = f+h}. (108)
Now, on account of (95)

Finiteness of A implies finiteness of S(Al),S(AZ) and of SS),
which can be effectively determined. (109)

With ¥, := o4 ?(A0) =02 (A)c ¥

finiteness of A implies finiteness of X A. (110)
By the definition
A" = e (S x 24 x S (111)

holds d € Ap N A®)'* for d = Twp (b) because of (64d).
Now S(AZ) is used to describe the positioning of d inside b. Let therefore

AR = A(Q)/US(AQ), which is finite if A is finite,
and can be effectively determined. (112)

Let the homomorphisms gog) c A0 5 A% and 'y(A2) c A@* 5 A he defined
by

(2) — 2o fi A0

PA ((Il,xg,l‘g)). T2 Ior (xl,x%xS) € )

'y(Az)(y) =y fory e A®@" and

V(AZ)(y) =cforye S(A2). (113)

Now, on account of (64c) Vg)(@g)(x)) € Ap N A®@"* should hold for each
xeWa.
With the mappings go(j'l) AR S(Ag) and go(j's) : AR S(Az) defined
by
5V ((f.a.9)) = f and 57 ((f,0,9)) =g for (f,a,9) € AP and
eQV () =R (f) = f for fe ST (114)
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it holds ’y(Az)(QD(AQ)(WA)) C ApNA@'* if
#D(Wa) € (U (R 71 (0) AP\ AP PG AR where
F@ = {ay € A AP0 (@) £ o5V ()} (115)
Let the mapping Z3) : A®* = 5% be defined by
7D (e):=0, and ZP (uv) := ¥ (v) for ue A®* and ve A, (116)
Then (115) implies
7R @) = 2 (1D (D (2))) for cach z € Wa. (117)

Now, the definitions concerning A®) are similar to those concerning A(?). But
additionally it must be pointed out that

Ey C LLID?*\(LLI[VE* (f,a,9)(f",d’,g") € |_|_|ﬂ1;5 I_Ll[vf

_ Ex*
g=0}uz").

Therefore we use an additional letter 0 ¢ LI_IHJ;J US’(A?’) to define the content of the
third track by a prefix closed local language such that

@) (Wa) Cpre((SK) U{(f.a.9) € WElg # 01){(f.a.9) € WElg = 0}{0}").
So let
A® = (S i (£4) x SY) and A®) = 4@ usP (0},
which are finite and can be effectively determined, if A is finite. (118)

By this definition of A®) holds e € By NAG)* for e = Ty, (b) because of (64d).
SS)U{G} is used to describe the positioning of e inside b.

Let the homomorphisms wg) c A0 5 AB®* and 'yg) c A0 5 AB)x pe
defined by

<P(A3)((x1,x2,x3)) =13 for (z1,72,23) € AO’,
Y3 (y) =y for y € A®) and
7§ () = for y € ST {0} (119)

Now, on account of (64b) ’}/g))((p(j)(x)) € EusﬂA(3)/* should hold for each
rzeWa.

With the mappings gp(AB'l) s ABG) Sf) and @(A&S) : AB) Sg’) defined
by
o5 (F.0,9) = f and 957 ((f.a.9)) =g for (f,a,9) € A®,
PRV (1) =R (f) 1= f for fe ST and
P50 =57 (0) = 0. (120)
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it holds 45 (oW (Wa)) € Exn A®)'* if
o (Wa) e SO\ HAD") \ AC S AG where
F® = {ay € AP A® oG (2) £ o3 (1)} U
(A® N (S~ 0y u{o(a <3>\{0} U
(ABN ((AB 1 (52 =1(0)) U{0}){0}. (121)

Let the mapping ZS” s AG* SS) be defined by
Z(AB)( ):=0, and AN )(uv) (3 3)( ) for ue AG* and ve A®),  (122)
Then (121) implies
7R (@) = 2o (4D (0D (2))) for each x € Wa. (123)
Now the conditions (64a) and (64d) imply restrictions of the set A0’ which
finally define the alphabet

A0 ¢ A0 = AW % A®) 5 A®) = A x (A@)’us(j)) < (A® usPu(oy).

For that purpose let the mappings 90 A — 2 and @(3 i AW = Zbe
defined by
42 ((fra,9)) i=a for (f,a,9) € AV with i € {2,3}. (124)

As the second and third track together represent a shuffled representation, (64a)
requires

either x5 € A(2)/, x3 € SA)U{O} and go(l 2)( 1) = QO(AQ'Q) (x2)
or To € 5(42)’ T3 € A® and ga(A )(xl) = L(@(A'Q) (x3))
for each (z1,22,23) € AU, (125)

Additionally (64d) requires
ea () = o (@2) + 3 () and
ga(Al'?’) (1) = go(j's)(xg) +QD(A£))'3)($3) for each (x1,z9,23) € AV, (126)
Let therefore
A = {(z1,29,73) € AV'| it holds (125) and (126)}, (127)

which is finite and can be effectively determined, if A is finite.

Combining (127) with (105), (115) and (121) result in
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Definition 25. Let A C Wp, then
Wa :=A0* 0
W)U (R )71 0)aM*) \ AWM AW
() ({e}u (o @ D)7H0)a@%) \ AP G AR
) HE U (@G D) L0\ {01 AG) \ A@*FE ABH,

By the well known closure properties of the class of regular languages [1] this
representation shows that WA is regular, if A is finite, and it is a prefix closed

local language, because of <p (A() ) € A for each i € {1,2,3}.

To show that WA represents the function REP 2Apna®, We need an addi-
tional homomorphism 74 : A0* — (LWpULLE)*, defined by

na((z1,x2,23)) := x9 for (x1,29,23) € AV with o € Wp

and

na((x1,29,23)) := a3 for (z1,19,23) € AV with 23 € L. (128)
By (128) na is well defined, because
A() = {($1,IE2,I’3) € A()|IZ’2 € LU[P}U{(xlanax3) € A()‘x3 S |—|-J|}v>}
on account of (125).
(115) and (121) imply na(Wa) C 7L (Ap) N WLTJ:S(E[F,). With a standard
induction technique for prefix closed local languages it follows

Lemma 9.
Let x € Wa, then na(z) € mpL (Ap) QWJJL(ED;) is a shuffled representation of
2 3), (3

oW (2) € Ap by 1S (R (@) € Ap and . AP (X (2)) € By

To show the reverse of Lemma 9, the following observation is helpful:

Lemma 10.

Let V/,x € (WpUp)* and b="Vbz € ﬂful (Ap) ﬂﬂful (Ep) be a shuffled represen-

tation of c € Ap by d =7y (b) € Ap and e =y, (b) € Eg, then V' is a shuffled

representation of ¢’ € pre(c) with || = |b/| by d' € pre(d) and €’ € pre(e) with

|d'| = |me (V)] and |e’| = |, (0)].

Using Lemma 10 with |z| = 1, standard induction technique shows

Lemma 11.

Letbe WL; (Ap) ﬂmj_l}: (Ep) be a shuffled representation of c € Ap by d =y, () €

Ap and e =y, (b) € E, then there exists x € Wa such that b=na(z), c=
1 2), (2 3), (3

oW (@), d=1R (D (@) and e =1 (6 (@)).
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Lemma 9 and Lemma 11 imply that for each ¢ € Ap N A* it holds,
d € Rp({c}) iff there exists x € W with c= Y dd=~P P
P A with c= ¢’ (z) and d=7," (¢4 ().

Now the results of this section can be summarized:

Definition 26.
Let the alphabetic homomorphisms pa : AO* — A* and va : AO* — g be de-
fined by

pa(x) = gp(Al)(x) € AW* = A* and vp(z) = *y(AQ)(ga(AQ) (x)) € A@* Wp
for xe AU* C A0,

Theorem 16 (Representation Theorem).
Let A C Wp, then Ry (B) =va(ux' (B)NWa) for each B C Apn A*.
Additionally W A is regular, if A is finite.

Ezample 15. o
Theorem 16 can be applied to Example 12 to prove SP(pre(P),V). For that
purpose a finite subset A C g has to be found such that aﬂgl(V) CApgNA*.

This can be achieved considering the product automaton of V and [ePLu, if this
automaton is finite. Reachability analysis for this product construction result in
the product automaton of Fig. 12. Fig. 12 shows that

(111,¢,0)

- (1’2)/ (07 b7 lH) &111

(li1,¢,0) | |(0,a,111) (211,¢,111) | | (11,6, 211)

(111,b,211) /(4_211)

I

Fig. 12. Product automaton of V and If’u

04[,21(‘7) C A n{(0,a,111),(0,b,111), (111,¢,0), (L11,b,211), (211, ¢, 111) } . (129)
For this example let therefore

A= A(l) = {(07 a, 1H)7 (07 b7 1H)a (1117670)7 (1Ha ba 211)7 (2Haca 111)}-
This implies

SW = {0,120}, 89 = {0,111}, ST = {0, 111.2u}, Ta={a,bc},
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A(Q)/ = {(070‘7 1II)a (Oa ba 1H)7 (1117@0)’ (1H7a72H)a (11171)7211)7 (2Ha C, 111)}7 and
A®" = {(0,a,111), (0,0, 111), (111, ¢,0)}.

Now AO is given by (127). To illustrate the three tracks, we use a column
notation to represent the elements of

(0,a,151) (0,a,151) (0,b,111) (0,b,111) (111,¢,0)
A() = { (Oaaa]-H) 5 0 3 (07b>1H) P VO 5 (].H,C,O) 5
0 (0,d, 117) 0 (0,5, 111) 0
[ (111,¢,0) (1y1,b,211) (111,b,211) (111,b,211) (211, ¢, 111)
0 o | (s bs2) |5 | (0,6,10) | 155 | Qe dn) |
| (111,¢,0) 0 1 (0,b,1yy) 0
[(2me1m)] [ i l) | (0,a,111) (0,b,111) (111,¢,0)
(1117670) 1H 5 (07043 111) 3 (07bv7 111) P (IHLQO) 5
111 L (]-Haéao) i 0 0 0
[(111,0,211) ] [ 2rn,¢, 1) |
(111,13,211) (21179111) }.
- O - . 0 -

The definition of WA can be translated into a semiautomaton
Wai= (A0, Y, 44, (0,0,0))

recognizing W, where Sg = S(Al) X S(A2) X (SS)U{()}). Its state transition rela-
tion
AacSYx A0 x 54

can be constructed step by step in compliance with the restrictions of Defini-
tion 25. For its representation we use a column notation for the states just as
for the elements of AV, So we get

0] [(0,a,111) ] [ 1t 0] [(0,a,111)] [1nt 01 [(0,b,111) | [ 1mr
Aa={|0] | (0,a,151) | 111 |, |O 0 01,10 |(0,b,1y) ]| |11
0 o |lo] o] [©aw] 1] [0 0 0
[0 [(0,6,11)7 [1rr ] Lir | [ (Lir,¢,0)] [0O] Iir | { (L, b,210) | | 20
0 0 0, {t| | (Quwe0) | [0, (1| | (Qr,0,20) | |20 ,
0] L©b1) ] L] |0 0 0] |o 0 0
[y ] [ (L, b,2m0) ] [ 20 11 (111,¢,0) | [O Iir | { (L1, b,210) | | 21
Ly Ly ;| , [ O 0 01,10 (0,6,111) | | 1un
| 0 (0,0,111) I8} Irr| [ (111,6,0) | |0 11 1 it
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21 | | Qe 1m) | | 1 2 | | Qe lmn) | | 1 201 ] [ (2m,¢,110)

211 | | e ) | ||, | 1o (111,¢,0) 0|, |1 it
| 0 0 0 i IS} I | L (111,¢,0)
[0 [(0,a,11)] [ 1 0] [(0,b,111)] [1m I ] [(li,e0)] [0
E) (O’GJ 111) 1}1 , Q (O,bv,ln) 1VH , 1VH (1HLC,0) Q ,
K 0 0] [0 0 0 0 | 0 0
111 (111,6,211) | | 211 211 2,6 1m) | [ 1n
lip (1r,b,2m) | | 2| 5 | 2m (2,6 1m) | | o | -
0 0 0 0 0 0

Applying standard automata algorithms [1] to this semiautomaton, shows
va(Wa) C oz[gl(V), which by Theorem 16 and (129) implies

Rh(az (V) = valuz (a3 (V) N Wa) C az (V). (130)

o o

Now (130) together with Corollary 8 proves SP(pre(P),V).

Using Corollary 8 and Theorem 16, Example 13 demonstrates how to decide
SP(pre(P),V), if there exists a finite subset A C W, such that ag (V) C A*.
Since we assume () # P C X* and §(qo, pre(P)) = Q, pre(P) is recognized by the
automaton P := (X,Q,0,q0,Q). So using Corollary 9 instead of Corollary 8, we
also can decide SP(pre(P),V), if there exists a finite subset A C L such that

(az'(V)NZZ1(0) C A%,

Now the question arises: Is there any relation between A and A? The
only difference between P and P is the set of their final states: F' C ) versus Q.
Therefore Definition 16 implies

Wy =wp U {(f,a,f) E]NOQ ><E><]N(? | 6(qo,a) is defined} U
{(fia,f—1y) € ]Ng2 x X' x ]NOQ | f>14 and 6(q,a) is defined}.

Now on account of

{(fya, f —1q+15(9.0) € NG x Ex N | f =1, and 8(g,a) is defined} U
{(f,a, f +15040,a) € ]NOQ x X X ]NOQ | 6(go,a) is defined} C LWip,

for each (f,a,g) € L there exists (f,a,g’) € Wp such that ¢’ > g. (131)

(35) implies

(f+h,a,g' +h) € Wwp for each (f,a,g’) € Wp and h € ]N(?. (132)
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By (131) and (132) an induction proof shows:

For each = € A there exists y € Ap with ap () = ap(y) and
Zp(y') = Zp(a') for each 2’ € pre(z) and y’ € pre(y) with |z| = |¢/,

which implies

For each x € a[;l(V) there exists y € ap (V) with ap(z) = ap(y) and
Zp(y') > Zp(a') for each 2’ € pre(z) and y' € pre(y) with |2/| =|y'|.  (133)

Let now A C WweN(T(Q) x ¥ x T(Q)) such that ap (V) C A*, and let X' be
defined as in (110). Let

Sa = Zp(pre(ap '(V))) and
Sp = {fe]Ngg| there exists g € Sa with g > f}. (134)

Then finiteness of A implies finiteness of Yo, Sa and Sa, and by (133) holds

aﬂgl(V) C A* with A:= L N (SA X XA X S'A). This implies:

If ap ' (V) C A* for a finite subset A C Lp, then there exists
a finite subset A C Wy with (az ' (V)N Z;(0)) € A% (135)

The following example shows that the converse of (135) does not hold.

Ezample 14. - -
Let P and P as defined in Figure 8, and let V and V as defined in Fig-

*&—b*@

Fig. 13. Semiautomaton V recognizing V'

ure 13. Then Zus(a[gl(f/)) = {0} U {ng1|n € IN}. Therefore each A C Wy with
a[gl(f/) C A* is an infinite set.

But (Ot,_l(V) N Zﬂs_l(())) C {(O,CL,O), (0,(1, 111 ,(1[1,0,, 1H)7 (111,1),0)}*, because
of Zﬂ%(a[;l(f/)) = {0} U{ni|n € N}, and c_l(augl(‘_/) N Zugl(O)) = () for each
ce a[gl(f/) with Z; (c) = 2.

=
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8 Decidability Questions

In Section 7 it was demonstrated by way of an example, how a finite set A C Lp
can be found that fulfils the condition agp ! (pre(V)) C A*. Given that P and V
are regular languages the approach is now considered in general and it is shown
how the existence of such a finite set can be decided.

For an arbitrary alphabet I’ let the mapping alph : 27 " — 2" be defined

by I'(0) :=T'({e}) :==0, I'{wa}) := F'{w})U{a} for w € I'* and a € I', and

I'L) == U I'{w}). Then the minimal set A with the above property is
weL

alph(ap * (pre(V))). So, the problem is to find alph(agp ! (pre(V))) and to prove

that alph(ag (pre(V))) is finite. In (135) it is shown that the more general

problem is to investigate alph(ap' (V)N Zz1(0)). But we first examine the

problem concerning alph(ag *(pre(V))), because there is a much easier decision
procedure than for the general problem.

Let now 0 # P C X* 0 #V C X* P=(X,Q,5,q,F) a deterministic au-
tomaton that recognizes P with §(go,pre(P)) = @, and V = (X,Qv,dv,qv,) a
deterministic semiautomaton that recognizes pre(V) with @ NQy = 0. Then
Sv(qvg,ap(x)) is defined for each z € ap ' (pre(V)).

The set ! (ap *(pre(V))) Nip is finite for each = € ap ! (pre(V))
and depends only on (Zp(x),0v(qvy,cp(x))).  (136)

For each y € 27 (ap H(pre(V))) Nwp is (Zp(zy), ov(qv,, ap(zy)))
uniquely determined by (Zp(x),dv(gv,,cr(z))) and y. (137)

Let Qpy := {(Zp(x),0y(qvy,p(x)))|x € ap'(pre(V))}. Then Qpy can be con-
sidered as the state set of a deterministic semiautomaton Spy that recognizes
ap *(pre(V)). Tts initial state is (0,qy,), its alphabet is Lip, and its state transi-
tion function is given by (137). More precisely:

Sev = (Wp, Qpv,dpv, (0,qv,)) where dpy : Qpy X Lp — Qpv
is a partial function with

dpv ((Zp (@), 0v(qve, ap(2))),y) = (Zp (xy), v (avy, op (2y)))
for 2 € ap H(pre(V)) and y € 2~ (ap * (pre(V))) N wp. (138)

In example 13, Spy corresponds to the product automaton of Figure 12.
Let now Zpy : oz[gl(pre(V)) — Qpv with

Zpy(x) := (Zp(x),0y(qvy, cp ())) for each 2 € ap (pre(V)). (139)
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Then

Qpv = Zpv(ap H(pre(V))) and

Zpv(z) = dpv((0,qv, ), ) for each z € ag * (pre(V)). (140)
For each n € INg let Agf) ={w € Ap||w| <n} and
QW) = Zev (g (pre(V)) N ALY). (141)

From (136) follows that ap *(pre(V)) ﬂA[(P") and thus

[g{,) for each n € INy are finite sets. (142)

1f QL) = QWY for a k € INg, then follows from (136) and (137) QYY) = QW)
and

alph(auil(pre(V))ﬂAg—H)) =alph(ag ! (pre(V)) ﬂA[gH'l)) for each i > k. (143)

Because Ap = |J A[(P") and A[(Pn) C A[(F,n+1) for each n € Ny holds
nelNg

Qpy = U Q[gz,) and Q[gg/) C Q[gy_l) for each n € INo. (144)
n€lNg

From (143)-(144) follows
alph(op " (pre(V))) = alph(az " (pre(V)) N AL™Y), as well as Qpy = Qg if
[(Plz,) = [(P’fvﬂ), and alph(ap ! (pre(V))) and Qpy are finite sets (145)
because of (142).
Because ag *(pre(V)) is prefix closed
alph(ag ' (pre(V))) C Zp(ag * (pre(V))) x £ x Zp(ag * (pre(V))), and

Z[p(oz[gl(pre(V))) C pg(alph(agl(pre(‘/)))) U {0}, where p3((f,a,g)) := g for
(f,a,g) € Wp. Because X is finite, it follows

alph(ap ! (pre(V))) is finite iff Zp(ap *(pre(V))) is finite. (146)
Accordingly, from the finiteness of Qy follows
Zp(ap*(pre(V))) is finite iff Qpy is finite. (147)
If Qpy is finite, then because of (144)

it exists a k € INg with Q[g@ = Q[g;) for all i > k. (148)
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Because of (145)-(148) the stepwise computation of

Q&;@ for i € INg and the test Q[E;Q = gyl)
provides a semi-algorithm for the finiteness of alph(ap *(pre(V))).  (149)

In case of a positive result, alph(ap ' (pre(V))) can be computed using (145).

In preparation for the decision on finiteness of Qpy we need a closer look
on the structure of LWp. By Definition 13, Definition 16 and (50) it holds

Wp =Ap (Wp) = Ap(lp) U Ap(llp) U Ap(llp) U Ap(lp) and
Ap(Wp) ={(f,a,f +1,) € NE x £ x N9 | 6(go,a) = p and it exists b € X such
that d(p,b) is defined},
Ap(Wp) ={(f,a,f+1,—14) € ]NOQ x X X ]NOQ | f>14,0(¢,a) =p and it exists
b e X such that §(p,b) is defined},
Ap(Wp) ={(f,a,f —14) e N x Ex NG | f =1, and 6(q,a) € F} and
Ap(Dp) ={(f,a, f) € N9 x X x N9 | 6(qo,a) € F}. (150)

On account of (132) a proper subset WZ C LWp together with ]Ng2 suffices to
completely characterize LWp. Let therefore

Wwg =02 U g U L U WLg with
wg :={(0,a,1p) € ]NOQ X X X ]N((‘;2 | 6(go,a) = p and it exists b € X such
that 6(p,b) is defined},
g :={(14,a,1,) € N x ¥ x NS | 6(¢,a) = p and it exists
b€ X such that 6(p,b) is defined},
g :={(14,a,0) € N§ x & x N | 6(q,a) € F} and
g :={(0,a,0) € N& x X x N? | 6(qgo,a) € F}. (151)
Then by (132)
We ={(f+h,a,g+h) ENG x Tx NG | (f,a.9) € W and h € NJ}.  (152)
The following should be noticed:
Wwg =10g Wby umg v wg.
Generally, for (f/,a,g’) € Wp the representation (f’,a,g') = (f +h,a,g+h)
with (f,a,g) € W§ and h € ]NOQ is not unique.
WZ is finite for finite automata [P. (153)

Let the mapping op : Lp — 2P \ {0} be defined by

or((fa,9") = {(f.a,9) €WE | (f;a,9") = (f+h,a,g+h) with he Ni'} (154)
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for (f',a,9") € Wp.

For the decision on finiteness of Qpy we now utilize results from Petri
nets [12], [13]. A Petri net N = (S,T,K) consists of a finite set S of places, a
finite set T' of transitions, and a set K C (S xT)U (T x S) of edges. A marking
of such a Petri net is a mapping M : S — INg. Dynamic behavior of Petri nets is
formalized in terms of occurrence steps and occurrence sequences. The set 2 of
occurrence steps is defined by

Q:={(Mt,M)eNGxTxN5 | M> > 1, and

z€8,(z,t)EK
M=M- > 1.+ > L} (155)

z€S,(z,t)EK yeS,(t,y)eK

The set O of occurrence steps with @ C 27 and the functions Z : O — ]NOS and
F:0— ]Ng are defined inductively by

For each o= (M,t,M') € 2 let 0 € O, Z(0) := M and F (o) := M'.
For each w € O and o € 2 with F(w) =Z(0) let
wo € O, Z(wo) :=ZI(w) and F(wo) := F(0). (156)
Z(w) is called the initial marking and F(w) the final marking of w. For M € N
the reachability set E(M) is defined by
E(M) := {M}UFIZT H(M)). (157)

The semiautomaton Spy can be simulated by a Petri net Npy such that there
exists an injective mapping ¢ from Qpy into the set of markings of Npy with

U@pv) = E(((0,4v,)))- (158)
To define Npy let its set of places S := QUQy. Let therefore the injective mapping
L Qpy — lN(?UQV
be defined by
U(f,9)) (@) := f(z) for z € Q,

u(f,9))(z) =0 for z € Qv \ {q} and
u(f,@))(z) =1 for z € Qvn{q},
for each (f,q) € Qpy C ]Ng2 X Qy. (159)

The set T' of transitions of Npy will be defined such that there exists a bijective
mapping x : Wg x Qv — T'. For this purpose let T":= TUuTuTuU T, where

T :={(r,a,(p,5)) € Qv x T x (Q x Qv) | (0,a,1,) € LF and dy(r,a) = s},
T:={((¢,7),a,(p,$)) € (@ % Qv) x Tx (@ x Q) | (14,a,1p) € LF and dy(r,a) = s},
T :={((q,7),a,5) € (Q x Qv) x ¥ x Qv | (14,a,0) € LT and dy(r,a) = s}, and
T:={(r,a,s) € Qv x ¥ x Qy | (0,a,0) € WZ and dy(r,a) = s}. (160)
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Now let the bijective mapping x : LU X Qv — T be defined by

x(((0,a,1p),7)) :=(r,a,(p,dv(r,a))) for ((0,a,1p),7) € WE X Qv,
x(((1g,a,1p),m)) :=((g,7), @, (p, dv(r,a))) for ((14,a,1p),7) € Wp x Qv,
x(((14,a,0),7)) :=((g,7),a,0v(r,a)) for ((14,a,0),r) € ILg x Qv, and
x(((0,a,0),7)) :=(r,a,dy(r,a)) for ((0,a,0),r) € LI xQy. (161)

The set K of edges of Npy let be defined by K := KUKUKU I:(, where
K= U {(Tv (r,a,(p,s))),((T,a,(p,s)),p),((r,a,(p,s)),s)}
(r,a,(p,s))eT
C (QvxT)U(T x (QUQv)),
K= U {(a.((¢;7),a,(p,5))), (r,((a.7),a,(p,5))), (((¢,7), a, (P, 5)),p),

((Q»T)7a>(p,5))€7°“

(((@:r),a.(p,5)),9)} € (QUQW) x T)U(T x (QUQW)),

K= U {(a,((¢;7),a,9)),(r,((¢;7),a,5)),(((g,7),a,8),5)}
((g;r),a,8)eT
C ((QUQY)xT)U(T x Qy), and
K= U {(r,(r,a,s)),((r,a,8),8)} C (Qv x T)U(T x Qy). (162)
(r,a,s)e’]z“

With these definitions of Npy, ¢ and x the following can be shown by induction:
For cach 0 =0;...0),| € (NQULV T x NQU9v)+

with 0; € NGY9Y x T x NEY?Y for 1 <i < |o| holds 0 € T~ (+((0,4v,))),

iff there exists z € ap ! (pre(V)) with |z| = |o| such that for 1 <i < |o| holds:
0i = ((Zpy(2;_1)), ti,t(Zpy(x}))) with I’; € pre(z) and |1’3| =7 for 0<j <o

and
ti € X((yi,0v(gqvo, ap(z5_1)))) with y; € op(z;),
where z =z7...7|, and x; € Wp for 1<i<|o|. (163)

This proves (158). Because ¢ is injective, Qpy is finite iff £(¢((0,qv,))) is finite.
The finiteness of £(M) is decidable for each each Petri net and each marking
M of the net [12] [13]. Therefore, with (149) and (145), the following theorem
holds.

Theorem 17. If P and VY are finite automata, then it is decidable if
alph(ap ' (pre(V))) is finite. In the positive case alph(agp ' (pre(V))) is com-
putable.

The key to decide finiteness of £(M) is Dickson’s lemma [8], [12]. Therefore
Theorem 17 can also be proven by directly applying Dickson’s lemma. We used
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the simulation by a Petri net, because we also need this simulation to tackle the
more general problem to decide the finiteness of alph(Zg *(0) Nag * (V).

For this we make the same assumptions as in the respective problem re-
garding alph(op ! (pre(V))) and additionally postulate the existence of Fy C Qv
with

V = {w € pre(V)[dv(gv,,w) € Fy}. (164)
Let therefore,
Apy :=pre(Zg ' (0)Nag ' (V) =
{u € ag " (pre(V))| Zev(u(u™ (g (pre(V)))) {0} x Fy # 0} (165)
From (163) it follows:

For each u € ap ' (pre(V)) holds
U Zev(u(u™ (o (pre(V)))))) = E(u(Zpv (u)))- (166)

For each Petri net and each two markings M and M’ it is decidable if M’ € E(M)
[12], [13]. From this it follows on account of (166):

For each u € ap * (pre(V)) it is decidable, if u € Apy. (167)
On account of (165):

alph(Zg ' (0) Nag ' (V) = alph(Apy). (168)

Let now Qpy := Zpy(Apy) C Qpy. (169)

Analog to (146) and (147),

alph(Apy) is finite if Qpy is finite. (170)
For each n € Ny let Q[(PQ,) = Qpy ﬂQ[(P@. (171)

Therewith,
Qﬁ!;,) are finite sets that are computable on account of (167). (172)

As in (144) - (148),

the stepwise computation of each Qg@ for i € Ng and the test QSJ\} = Qg\j_l)
provides a semi-algorithm to decide the finiteness of alph(Apy). (173)
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Let k£ € INg be the smallest i € Ny such that Qg\), = QS,@Q_I), then
A\ — A (i+1)
alph(A[pv) = alph(A[pV N A[P ) (174)

With regard to (170) it remains to prove the decidability of finiteness of Q[pv.
This can be done using the following result for Petri nets:

Let M and M’ markings of a Petri net, then it is decidable if
{M € E(M)|M' € E(M)} is finite [13]. (175)
On account of (166), (165), and (169):
Q[pv is finite iff for each g € Fy
U(Zev({u € ap (pre(V)[(0,9) € Zpv (u(u™" (ap (pre(V)))))}) is finite . (176)

On account of (166) furthermore holds:

U Zev({u € ap (pre(V)[(0,9) € Zpv (u(u™" (ap (pre(V)))))})
= {2 € £(((0,qv0)))[¢(0,9) € E(2)}. (177)
Now (175) - (177) prove the following theorem:

Theorem 18. If P and VYV are finite automata, then it is decidable if
alph(Zg 1(0)Nag ' (V) is finite. In the positive case alph(Zp *(0)Nag (V) is
computable by (174).

Now, combining the technique of Section 7 with the simulation of S-automata by
Petri nets will result in a proof of the decidability of SP(PU{e},V) for regular
P and V. The idea is, to consider the counterexamples for

R (op (V)N Z51(0)) Cap (V).
Preliminarily we notice that on account of (64d)

Zp(d) < Zp(c) for each d € Rp({c}). (178)

By Corollary 9 SP(PU{e}, V) does not hold, iff there exists ¢ € ag ' (V)N Zp *(0)
and d € R} ({c}) with d ¢ ag (V). With Theorem 16 this is equivalent to:

There exists x € W, with
piwp () € Zg 1 (0)Nap (V) and vy (2) ¢ ap (V). (179)

As v () € Rp({pwe (2)}) by (178) (179) is equivalent to
There exists € W, with

pip () € Zg 1 (0)Nap (V) and vy (x) € Zp H(0) \ ap * (V). (180)
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The first step to decide SP(PU{e},V) is to “isomorphically refine” the prefix
closed language W\, by appropriately attaching states of V to the elements

of I_LIYQ. For that purpose, additionally to the assumptions about P and V, we
assume that V is complete. This means dy : Qv X X — Qv is a total function,
and it poses no restriction on V, as using an additional dummy state each
deterministic automaton can be transformed into a complete deterministic
automaton recognizing the same language.

According to I_LID(,), go(uff) and cpﬁf), as defined in (127), (102) and (124),

let now

= {((y1,92),, (45,95)) € (Qu x Qu) x LI x (Qv x Qv)|
Yy = 5v(y1,<,0$[f) (1)),
Yy = 5v(y2,@(u3|;>2)(962)) if wg € u_l[f) and
yh = yo if w2 € ST), with
L= (‘T17x27$3)}a (181)
let the mappings ZDY(I) U — Qv and ZDY(Q) 1 Wp* — Qv be defined by
220 (e) = 2 () == qvg, 28D () =9, and ZXP(uv) =y (182)

for u € U¥* and v € ¥y with v = ((y1,¥2),z, (¥},¥5)),

and let the homomorphism p : ¥¥* — I_Ll[Q* be defined by

1/1[}!((91,192)737,(2/17?/@)) :=x for ((ylva)’x7<y{l’yé)) € !p[l\’/ (183)

Definition 27.
Let the prefiz closed language Wy C Wp* be defined by

WY = {we (08) (W)l 11 = Z2W (w) and yo = 2{®) (u) for each
uv € pre(w) with u € By* and v = ((y1,¥2),, (y],y5)) € ¥y }.
Now Definition 26 implies
25 (w) = 6 (v, e (s (VE () and
Z;@) (1) = dv(qvy, ap (Vg (g (u)))) for each u € W. (184)
As V is a complete deterministic automaton (wE!)IWDY is a bijection.  (185)
On account of (185), (180) is equivalent to:

There exists u € Wy with
e (P2 (1)) € Zg 1 (0) N (V) and v (U (u) € Zg ™ (0) \ o (V),

50



which by (184) can be equivalently restated in terms of reachable states:

There exists u € Wy with Zu\,/(l)(u) € Fy, Zﬂ\:@)(u) € Qv \ Fy and
Ze (e (Yp () = 0 = Ze (v (Vp (u)))- (186)

Caused by this formulation, the second step to decide SP(PU{e},V) is to con-
struct a deterministic semiautomaton WY, recognizing Wy¥. Generally Wy will be
infinite. It is an immediate consequence of Definition 27 that

W =) (Wi ) \ (XU UWE* YR ¥ *) with
X¢ ={((y1,92),7,(¥1,5)) € W [y1 # v, or Y2 # qv, } and

Yy ={((y1,y2), 2, (y,95)) (71, 52), %, (1, 75)) € Up &g |
YL # U1 or yh # o} (187)

Let now Wy, = (LLIEQ,S&P , Awp,S0) be a deterministic semiautomaton recogniz-

0 0 0

ing Wip, where Ayp 0 Sy X W — Sy is a partial function and sg € SBP.
Generally W, is infinite. (187) implies that the following deterministic semi-
automaton Wy, recognizes Wy

W = (B, S, s, ) where

SV = QV X QV X SIEBIPa qgo = (QV07QV0550)7 and

Ap : SE x WY — Sy is a partial function with

A%((yl,yg,s),a) = (y/17y/278/)7 for (ylvaaS) € Qv X Qv X SIEBIPa

a=((y1,92),, (yllﬂyé)) € Wﬂy and
Awp (s,2) = 5. (188)

By (188) and Definition 27 holds
N (gt u) = (Zg ) (). Zp ™ (1), Mg (0,0 (1)) for cach ue WE. (189)

To completely define WY, a complete definition of W\, must be given. For that

purpose we need the mapping @Sl‘:) : LLI[S) — SES’H),L-J{(V)} defined by

PC1((f,a,9)) == f for (f,a,9) e W),
gb(jl'},l)(f) = ffor f € SS’H), and
0 (190)
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As in Example 13, (127) and Definition 25 can be directly translated into a
deterministic semiautomaton W,,. Let therefore

SO0 =55 x 5 x (58 w{0}), s0:=(0,0,0), and let
Awp ((91,92,03), (71, 22,23)) be defined for
(q1,92,q3) € SBP and (r1,22,73) € LU[Q with

(q1,02,03) = (@01 (1), 081 (w2), 31 (23)), where
Aip (91,42, 03), (1,22,73)) := (252 (1), 052 (w2),0) for

23 € (W N (eE2)=10))u{0} and

Mg (91,2, 03), (21,22, 23)) = (052 (1), 05D (w2), 052 (23)) for
3 € W@\ (W N (D)1 0) u{o}). (191)

Now by induction it is easy to show that Wy, recognizes Wy,,. With (96), (117),
Definition 25 and Definition 26, (191) implies

Z[P(MLLIP (U})) =q1 and Z[P(VuJ[P (’LU)) =q2, with )‘LLI|P((0)O7O)7U}) = (q15q27q3)a
for each w € Wiy (192)

By (126) holds
Awg ((0,0,0),w) € {(0,0,0),(0,0,0)} for each w € Wy, with
Mg ((0,0,0),w) € {0} x SE) x (6 0{0}). (193)
Now, on account of (180), (186), (189), (192) and (193)
SP(PU{e},V) iff there don’t exist any u € Wy with
AR (qpy 1) € Fy x (Qv\ Fy) x {(0,0,0),(0,0,0)}. (194)
A more detailed analysis shows that
Ap(apy,u) € Fy X (Qv \ Fv) x {(0,0,0),(0,0,0)} iff
Ab(apy-u) € Fy x (Qv\ Fy) x {(0,0,0)}.

The reachability question posed by (194) can be decided by simulating Wy
by a Petri net. Preparative to that simulation, first we need an appropriate
characterization of Ay, similar to the characterization of Wp by LIS together
with ]N((;?. So the third step to decide SP(PU{e},V) is to present such a
characterization.

By (181), (182), (188) and (191) Ay is uniquely determined by &y and
0

I_Ll[g. Therefore we now look for an appropriate characterization of Ly . For that
purpose we assume
alph(P) = X, (195)
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which don’t cause any restriction for P. Now we assemble the different sets to
define LLI&,). On account of (99), (106), (107), (62c) and Ep C Ap holds

wi = we, SG) = Ze(Ap) and SE) = Zp(Ep). (196)
SS’D)D is finite and can be effectively determined, if
P is finite, and it holds 0 € S (197)

On account of (108), (197), (111), (195) and (118) it holds

S&) = Zp(Ap), W = e N (Zp(Ap) x £ x Zp(Ap)) and

W = WP N (Zp(Be) x i 1(8) x Ze(Br)) = wg. (198)
So l_l_l[g’)/ = W7 is finite and can be effectively determined, if P is finite. (199)

By (132) (127) can be rephrased. Let therefore the mappings go(Al'l)/, cpga)/ and

cp(Al'S)l be defined by

S0V NG x 25 N9 = N9 with o0 ((f,a,9)) = £,

ga(Al'Q)l : ]NOQ x X x ]NOQ — XY with @S'Q)/((f,a,g)) =aq,

ga(Al'S)/ : ]NOQ x X X ]NOQ — ]NOQ with go(Al'?’)/((f,a,g)) =g

for each (f,a,q) € ]Ng’2 X X X ]Ng). (200)

Then (127) becomes

AV ={ (w1,22,23) € (INS2 X ExlNOQ) % A2« A(3) |

o (@) =3 (w2) + ol (w3),
A0 (@) = 05V (@2) + 5" (wa) and
either x9 € A(2)/, x3 € SS)U{(V)} and cp(Alg),(xl) = go(j'z) (z2)

or xg € S(A2), z3€ A® and <p(Al'2)/(x1) = Z(@S’Q) (x3)) }. (201)
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Now (201) together with (112), (118), (196) and (198) implies

(E) with

LLI[Q —Lu[ff) Wilp
W8 = { (21,20,73) € (N x 2 x N) x wi®’ x (Zp (Ep)W{0}) |

(2 1)

soLl;( 1) = oo (29) + 030 (23),
(1) = w&f,f’) (22) + 052 (25) and
“2 (21) = o0 (o) } and

Wi = (xl,xg, 23) € (NQ x £ x N9) x Zp(Ap) x LG

m

P
V' (@1) = o8 (wa) + o) (ws),
‘PSS (1) = 3)( )+<p(33)( 3) and
P02 (1) = 1032 (22)) 1. (202)

Because of (198) and (152) holds
(f,a,9) € LLIE(P2), iff there exists h € ]NOQ and (f',a,9") € WZ with
f=f+heZp(Ap) and g =g’ +h. (203)
This implies
W) = { (21, 02,5) € (NG x 2 x N9) x WP x (Zp(Ee){0}) |
there exist (f’,a,g') € WZ and h € ]NOQ, such that
f'+he Zp(Ap), 22 = (f +h,a,g’ +h) and

= (' +h+e8D (@3),0,9' + h+ 05D (w3)) 1. (204)

Similar to (204) LLI[%E) can be represented by
W = { (w1,22,23) € (NG x ¥ x ING) x Zp(Ap) x L0
there exist (f’,a,9") € wZ and h € Zp(Ap), such that
3= (f',a,9'), vo =h and x1 = (f' +h,i(a),g’ +h) }. (205)

On account of (153) the representation (204) is ambiguous. Contrary to (204),
the representation (205) is unique. To capture the ambiguity of (204) let the

mapping

0( (S) — 2% \ {0} be defined by
a[}gs)((zl,xg,mg)) ={(f',a,g") € W | there exists h € ]Ng2 such that
' +heZp(Ap), 22 = (f +h,a,g' +h) and
= (f'+ht ey (@3),0.9 + h+ ¢l (03)) )

for each (xl,xg,xg) € LLIS,S). (206)
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As LLIQ = Luégs) S} LLIE;E), for technical reasons a[f)s) can be extended to

o8 swl — 2YF\ {0}) U (2"F\ {0}) by

U"Q((xl’x?’xi”)) = U[(F>S)(($17332,$3)) for (x1,22,23) € LLI[(pS) and
(

J[P)((xl,xg,xg)) ={(f",a,9') € wZ | there exists h € Zp(Ap) such that

r3=(f,a,9"), vo=h and z1 = (f' +h,i(a),g' +h) }

for (z1,72,73) € LLI&;E),
which implies #(U"())((xl,xg,xg))) =1 for (x1,z2,23) € LLI&,E). (207)

Now (204), (205) and (207) present an appropriate characterization of LLIS,) to
simulate WY by a Petri net Nj, which is the final step to decide SP(PU{e}, V).
For that purpose we additionally assume finiteness of P and V. To define the set
of places of N[,Y, let

QY and QS) for each i € {1,2} be copies of @ and Qy with

QWNQEP =p= Qél) ﬁQéQ) and Q(i) ﬂQ&,j) = () for each 4,5 € {1,2}, and let
7@ QWuQY — QUQy for each i € {1,2} be the corresponding bijections
with 7(Q®) = Q and 7@ (Q{") = Qy for each i € {1,2}. (208)

Corresponding to the state set Sp of the semiautomaton Wy, which by (188),
(191), (196) and (198) is represented by

Sp = Qv x Qv x (Zp(Ap) x Zp(Ap) x (Zp(Ep){0})),

the set RY of places of Ny is defined by

RY = QM uQPu@MuQ@u(Zp (Ep)u{0})). (209)
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By this definition there exists an injective mapping from Sy into the set of

markings of N¥. Let therefore the injection

QP uRP U@ LD u(Zp (Bp)W{0}))

w2 Sp — N be defined by

B ((q1.02. (51,52,53))) () == 0 for . € QY \ {(+) " (qn)},

2 ((q1. a2 (s1.52,53)))(@) == 1 for = € Q) N {(+() " (q)},

2 ((q1.02. (51,52,53))) () := 0 for . € QP \ {(+®) " (a2)},

B ((q1,02. (51,52, 83))) (x) =1 for x € Q%) N {(7®) "L (q2)},
(g2, (51,52,53))) (2) := 51 (7D (@) for z € QW

(g1, 2, (51,52,53))) (2) := 52(r P (2)) for z € Q)

12((q1,42, (51,52,53)))(x) := 0 for @ € (Zp(Ep)U{0}) \ {53}, and
Lg((q ,q2,(51,82,53)))(x) =1 for x € (Z[p(E[p)U{()}) N{s3} for each
(q1,q2, (s1,52,53)) € Sy C Qv x Qy x (NG x NG x (Zp (Ep)W{0})).

(210)

The set Ty of transitions of Ny will be defined such that there exists a bijective

mapping xp : (Qy x Qv x lWZ) U (Qy X LI_Ig) — TY¥. For this purpose let

T2 = {((a1,02), (0,p), (p1.92)) € (Qv X Qv) X (X% Q) x (Qv x Qv)|
(07 a, p)GLUIPa 5\/@17 ) pP1 and 5\/((]2,@):192}7

T3 ={((
(14,a,1,) € WE, dv(gi,a) =p1 and dv(g2,a) =pa},

7y {((ql,qm a), (p1,p2)) € (Qv X Qv) X (@ X X) X (Qv x Q)|
(14,a,0) € g, dv(q1,a) =p1 and dv(g2,a) =p2},

70 = {((q1,02),a, (p1,p2)) € (Qv X Qv) X £ x (Qu x Q)|
(0,a,0) € g, dy(q1,a) = p1 and dy(ga,a) = p2},

T8 —{(q1,(@,p),p1) € Qv x (£ x Q) x Qv]
(0,a,1 )ELLI and dy(q1,a) =p1},

T8 —{(q1,(g,%p),p1) € Qv x (@ x £ x Q) x Q|
(1(17647 )€LL| and 5\/((]1, ) pl}v

TV —{(a1,(4,8),p1) € Qu x (Q x £) x Q]
(lq,ZLO)GLu and dy(g1,a) =p1} and

TYE) —{(q1,d,p1) € Qv x 5 x Qv](0,3,0) € g and dv(q1,a) =p1}.
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Q1aQ2) (¢,a,p), (p1,p2)) € (Qv X Qv) X (Q X X' x Q) x (Qv X Qv)|
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Let now the bijective mapping xp : (Qv X Qv x LZ) U (Qy X LLIHE;') — T¥ be defined
by

X (91,92, (0,0,1p))) :=((q1,92), (a,p), (Ov(q1,a),8v(g2,a)))
for (q1,¢2,(0,a,1,)) € Qv x Qv x LLIg,
X¢ (1,42, (14,0, 1)) :==((41,42) (¢:0,p), (v (g1,0), 6w (g2, )
for (¢1,92,(14,a,1,)) € Qv x Qv x LLZ,
xr((q1,42,(14,a,0))) :==((q1,42), (¢,a), (dv(q1,a),0v(q2,a)))
for (g1,92,(1¢,a,0)) € Qv X Qv X LLIZ,
xr((q1,42,(0,a,0))) :=((q1,92), 0, (5v(q1,a),0v(g2,a)))
for (q1,¢2,(0,a,0)) € Qy x Qy x 1112,
x¢((41,(0,d,1p))) :=(g1,(@,p), v (q1,a))
01,(0,0,1,)) € Qu x LI,
q,a,p),0v(q1,a))

q1,(0,8,0)) € Qy x W2 . (212)
The set Ky of edges of NY let be defined by

K= K9 u Ry v K w kS v kY u kY u kY u kP,

where
Ky = U
((a1,92),(a,p),(p1,p2)) €Ty )

{(t") " Haq1), (a1, 92), (a,p), (p1,p2))),
((r (2)) (Q2)a((Q1,Q2)»(07 ), (P1,02))),
(((q1:92), (@.p), (p1,p2)), (r D) "L (p1)),
(((q1,2), (a,p), (p1,p2)), (7)) " (p2)),
(((q1,92), (a,p), (p1,p2))7(7'(1)) (p)),
(((q1,92), (a.p), (p1,p2)), (r*) L (p))} C

QPP x TE (@ x (PP uQWue®)),  (213)
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KA = U

((a1,42)-(¢:a,),(p1.p2)) €T

{((r (1))_ (q1),((q1,92),(q,a,p), (P1,P2))),

(( ) ( 2),((q1,92),(¢,a,p), (p1,p2))),
((T(l)) (q) ((q1,92),(q,a,p), (p1,p2))),
(*) (@), ((q1,42), (@.0,p), (p1,P2)));
(((q1,42), (@.a,p), (p1,p2)), (7)) 7L (p1)),
(((q1,42), (g,a,p), (p1,p2)), (7)) "1 (p2)),
(((q1.92), (q,a,p), (p1,p2)), (T1) " (p)),
(((q1.92), (q a,p),(p1,p2)), (r*) " (p))} C
QP uQWuQ®) x Ty ™) u(TE™ x (R uM L)),

R[\P/(S) — U

((q1,42)-(9,0),(p1,p2)) €Ty )
()™ Haq1), (a1, 92). (g,0), (p1,D2))),
(2)) (Q2) ((q1,92),(q,a), (p1,p2))),
7 ) (q (91,92),(g,a),(p1,p2))),
), ((q1,02), (g,0), (pl p2)));
p);(p1,p2)), (*1) " (p1)),
), (p1,92)), (7)) " (p2))} C

(T Q4 i),

— =

(
(
,(g,a,
((q1,42), (gr0
(@MUY uQMUQ®) x Ty (5))

RS U
((q1.02),0,(p1,p2)) €Ty )
(D)), ((q1.a2), 0, (p1,p2))),
(r®) M (q2), ((q1,02). @, (p1.p2))),
(((q1,92), @, (p1,p2)), (7 (1)) '(p1)),
(((q1,92),a, (p1,p2)), (7)) (p2))} C
(W) x Ty (T x QP ue?)),
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VB U
(a1,(a,p),p1) €Ty P

(D) Yaq), (a1, (@) p1)),
(1, (@,p).p1)),
(a1, (@p),p1), (V)" (p1)),
(q1.(@p), 1), 1p),
(a1, (@p),p1), (V)" (p))}
(QVW(Ze (Ep)u{0})) x
(T7 P < (Q0(Zp (Ep)u{0})QW)),

(0
(
(
(

E
Ty

L. U

(q1,(q,8,p),p1) €T

() a1, (q. (
(14, (q1,(q,@,p),p1)

(D) (@), a1, (0,,), 1),
((q1,(q,é,p),p1), ()L (p1)),
((q1,(g,@,p),p1),1p),
((q1,(q,@p),p1), (rP

(@ W(Zp (Be)u{ih)uQM) x 74Py

(17" % Q4 u(Zp (Bp ) {D})9QW),

V(E)

4,a,p),p1)),
),

)M} C

(q1.(q,a), Pl)GTV(E)

(D) ), (a1, (0, @), p1)),
(Lg: (41, (q:@),p1)),
{ED) @), (a1, (4,8),p1)),
(a1, (a:),p1), (1) " (p1)),
((q1,(¢,),p1),0)} €

(3 (Zp (Ep){0)LQW) x Ty Py

(T3 x QY W(Zp (Ep)0{0})))  and
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VB U
(a1.4.p1) €Ty ")

(D) (q), (g1, p1)),
(0,(q1,a,p1)),
((q1,,p1), rD) " (1)),
((qr,,p1),0)} C

(4 W(Zp (Ep){0})) x Ty Py

(T3P 5 QP26 (Ep){0}))). (220)

Let now the sets 2, Of and &Y (M) as well as the functions Zy and F¥ be
defined corresponding to (155), (156) and (157). By induction on the length of
occurrence sequences o € (Zp) " (tp ((qvy, qvy, (0,0,0)))) it can be shown that

Yo M@)= > M) = Y M@)=1

erS) eri,Q) z€Zp(Ep)u{0}
for each M € EF (1 ((gvy» vy, (0,0,0))). (221)

Therefore the function C”Y(g)  ER (1p ((avg 5 qvy, (0,0,0))) — ]Ng2 is well defined for
each M € &Y (1} ((qvy» vy, (0,0,0))) by

@ (M) =0 if M(0) =1 and
G (M) = f it M(f) =1 for f € Zp(Ep). (222)

For i € {1,2} let the functions Cg(i) 2 Ep (1E((gvo»qvo,(0,0,0))) — ]NOQ for each
M € EY(1p((avy»qvy» (0,0,0))) be defined by

W (M) (q) = M((rV) 71 (g)) and
P (M)(q) = M((r®) ™ (g)) for each g € Q. (223)

An induction as for (221) proves

M) =@ + P ),
YO (M) € Zp(Ap) and (XD (M) € Zp(Ap)
for each M € &Y (1 ((gvy» vy, (0,0,0))). (224)
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To formulate the main theorem about the simulation of WY\ by Ny let the map-
ping

o s — 2V QR {9}) 1 (2977 \ {0}) be defined by

o2 ((y1,92),2, (Wh,98))) == {w1} x {ya} x o9 for
(y1,92), 7, (W5, b)) € B0 Qv x Qv) x WD) x (Qv x Qv) and

o0 (y1,92),2, (W), 9b))) == {w1} x oY for
((y1,92), 2, (U5, 45)) € T M (Qv x Qv) x W) x (Qu x Qv). (225)

Now, together with (224) and (221) an induction on the length of w € Wy proves

Theorem 19.
RY ., mv RE\4+
For each 0= 01...0,5] € (INg ¥ x Tp x Ny )T with
% Vv
0; € ]Né%[P x T x ]Né?[P for 1 <i</o| holds o € (I[g)*l(%(qgo)),
iff there exists w € Wy with |w| = |o| such that for 1 <i < |o| holds:
0y = (”X(AX(qgmwgfl))’tivL%()‘X(qgovwg))) with w; € pre(w)7
|w§| =j for0<j<|o|, and t; € X};(Ug()(wi)), where
w=w ... W and w; ey for1<i<|o|.

Theorem 19 implies

e (e (arg W) = ¢ (e (a7,)). (226)

As the reachability problem of Petri nets is decidable [12], [13], by (194) and
(226) follows

Corollary 10.
SP(PU{e},V) is decidable for regular languages P and V.

The decidability of SP(PU{e},V) essentially depends on the decidability of the
Petri net reachability problem. In [12] this decidability result is annotated as
double complex: in the proof and in the algorithm. For practical applications it
is therefore important, to have simpler sufficient conditions for SP(PU{e},V),
as demonstrated in Example 10, Example 11 and in Example 13.
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Appendix
A Shuffle Projection in Terms of Shuffle Factors

The shuffle product UV [1] for languages U and V' can be defined in terms
of the homomorphisms 7 and 6.

Definition 28.
For U,V C X* the shuffle product ULV C X* is defined by

oy == o2 (V)=o) n () V).
It is easy to see that

IIT is commutative, {w} = {w}Il{e} for w e X*,
lw| = |u|+ |v] for w € {u}III{v} and u,v € T*,
pre(UIIV') = pre(U)Ipre(V), and
vy = | {w}i{v} for U,V C X*.
uelU,veV
By Lemma 4
{1,2} can be replaced by any set S with #(S) = 2. (227)

The following lemma is the key to a relation between shuffle products and shuffle
projection.

Lemma 12.
Let P C X*. Then w € {u}II{v} for u,v € P, iff there exist

xeﬂ (M"Y PU{e}) and K ¢ N with w = 0% (z) € PY,
telN

u=6"(IT§ (x)) and v =ONK (IR, 4 (x)).

Proof.

Let z € N (M) Y (PuU{e}) and K C N, then w := ON(z) € P and by
telN

Lemma 2 u:= OK (1IN (z)) € PY and v:= @N\K( ]N\K( x)) € P

Let wg : X — X7, 5, be defined by wi(a):= (Tl{l}) L(©% (a)) for a € ¥k and

wic(a) := (741 "1 ONE () for a € S, then w = ON(z) = O} (Wi (z))

and wi (z) € (1172~ 1({u}) N (=1 ~1({v}). This implies w € {u}IT{v}.

Let now w,v € P* and w € {u}III{v}. Then there exist
e (rf" 2}> H({u) N (e 1 ({0}) with €02 (@) = w,

ae ﬂ (TN~ (PU{e}) with ON(i1) = u and
telN
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ve N (N H(PU{e}) with ON () = v.
telN
Then, by “combining the structures” of w, 1 and ¥ there exists

ze () (@ HTHPULe)) with @]{ng{}“}(j):w,

ne€Nx{1,2}
N N s o o N N s o o
on NP @) =a, oN P P @) =,
332 @) = 1782 ) and |11 52 )] = 730 ()
for each 2’ € pre(Z) and w' € pre(w) with |2/| = |w/|. (228)

This implies w = QN {12} (),

u =M (7)) and v = O™ (X 2 (), (229)

Each bijection ¢ : N — N’ defines an isomorphism LN, Xy — XN by

N = ( L{( () )}) L i{ }( )) for a € X;) and i € N. Then it is easy to see [11]
that

No@) e () @)1 PU{e}) and OF (I (2)) = ) (I} (1N (2)))
teN’

for z € () (/)" (PU{e}) and K C N. (230)
teN

Applying (230) with N =1IN x {1,2} and N’ =N to (228) and (229) completes
the proof of the lemma.

Moreover, the second part of this proof shows
Corollary 11.
Let P C X*. Then w € {u}I{v} for u,v € PY, iff there exist

ze ()1 (PU{e}) and K C N with #(K) = #(IN\ K) = #(IN),

telN

w=0N(x) e P, u=0%(IT§(x)) and v=O" (I} x(2)).
Lemma 12 and corollary 11 motivates
Definition 29. N o
For PC X* let SFp : 28 — 28 be defined by
SFp(M) := {u € PY| there exist w € M and v € P such that w € {u}111{v}}

for M C P, The elements of SFp(M) are called shuffle factors of M.

It is an immediate consequence of this definition that

M C SFp(M), SFp(M) = | J SFp({w})
weM
and therefore SFp(U) C SFp(M) for U € M C P™. (231)
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Theorem 20.
Let P,V C X*. Then SP(PU{e},V) iff SFp(PHNV)C PMNV.

Proof.
By Corollary 11 SP(PU{e},V) implies SEp(PHNV) C PNV, which implies
SP(PU{e},V) on account of Lemma 12.

Remark. This proof shows that in Definition 7 the restriction K # () can be
omitted, or K can also be restricted by #(K) = #(IN\ K) = #(IN).

Additionally to commutativity also associativity of III is well known, see

for example [5]. Because of UIIIV = |J  {u}II{v}, the following lemma is
ueU,veV
sufficient for its proof.

Lemma 13.
Let w,v,w € X*. Then

({u} HI{o}) T {w} =
O T ({uh)n (D) T (e 0 () T ()] =
{u} ({0} {w}).
Proof. z € ({u}II{v})IT{w}, iff
there exists y € {u}I{v} with x € {y}I{w}. (232)

(232) is equivalent to:

There exist € (2~ ({u}) N (=111 ({v}) and
pe (P n () T ({w)) with
y =012} y) and z = 011213} (), (233)

(233) is equivalent to:

There exists % € (r{ ">~ ({u}) 0 (712 " (o) n (7523 "1 ({w}) with

T2 () =y, 0023Hz) =,

IS ) = S @] and 1P ) = {12 @)
for each 2’ € pre(%) and 2’ € pre(#) with |2/| = |2/|. (234)

where % result by “combining the structures” of ¢ and . (232) - (234) proves the
first equation of the lemma. The second equation can be shown by an analogous
argument.

Lemma 13 shows:

u € SFp({w}) and z € SFp({u}) implies x € SFp({w}) for each w € P™.
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Therefore SFp(SFp(M)) C SFp(M) for each M C P, which by (231) implies
SFp(SF p(M)) = SF p(M)for each M C P (235)

On account of (231) and (235) SFp is a closure operator [3]. For P,V C ¥* and
M c P, by Theorem 20 SFp(M) is the smallest V' with X C V and SP(PU
{€},V). On account of (6) holds

SFp(M)= (] V. (236)
Mcvcxy*
SP(PU{z}.V)
For P C X*, SFp is a generalization of Cx;, where

Cx(X) :={u € X*| there exist n € N and u;,v; € X* for 1 <i <n such that
u=1uq...uy and ujv;...upv, € X} =SFx(X)

for X ¢ X = X* [4], which is called the downward closure of X.

In preparation for the next section we show the following

Lemma 14.
{ua}I{vd} = ({u}I{vd})aU ({ua}II{v})b for u,v € X* and a,be X.

Proof.
On account of (227) {ua}II{vb} C X+, and therefore

{ua}II{vb} = OB ({21 ({ua}) n (=21 1 ({ub})] =
O ()7 ({uay) N (73 ) T ({ob}) N Ty 5y Dyl

O () ™ ({ua}) N (my 1) T (0D} N 7, 5 Ty =
O 2 (A1 =1 () n (72 =L ({wb})]aU

o2 (w7 (fuah) n (e T (oo =

({u} 1 {vb})a U ({ua}1T{v})b.

The properties of (227) and Lemma 14 completely characterize III. It is well
known that

{w} ={w}lI{e} = {e}MI{w} for w e X*,
{ua}I{vb} = ({u}I{vd})aU ({ua}I{v})b for u,v € X¥* and a,b € X, and

vmv = ) {uII{v} for U,V C £* (237)
ueU,veV

inductively defines III, see for example [7].
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Lemma 12 shows

For each € # w € P there exist ¢ #e € P and v € P" with
w € {e}1I{v}. (238)

(238) together with Lemma 12 implies the following well known inductive defi-
nition of P, see for example [7]:

P = U P where
nelN
P = pu{e} and P HD .= pUIIT(PU{e}) for n € IN. (239)

(239) motivates

Definition 30. N o
For PC X* and n € N let SF\W : 2P" 2P be defined by SFY (M) :=

{u e P| there exist w e M and v e P such that w e {u}II{v}}

for M C P,

It is an immediate consequence of this definition that

SFgL)(M) — U SFgL)({w}) and therefore

weM
SFY (1) € SFY (M) for U € M c P™ and n € IN. (240)

Since {e} ¢ P ¢ pntl) for n € IN, (239) implies

M c SFY (M) ¢ SFETY (M) for n e N,

and SFp(M) = | J SF{ (M) for M ¢ P~. (241)
nelN

The iterative definition of P(+™) together with the commutativity and associa-
tivity of III shows:

SPi D (M) = SFR) (SFEY (M) = SFR (SF ) (M)
for M C P* and n € IN. (242)

For M c P" (242) by induction implies
SFY) (M) © M iff SFSY (M) € M for cach n € IN.

Therefore, by (241) and Theorem 20 holds

Corollary 12.
Let P,V C X*. Then SP(PU{c},V) iff SFD (P nV) c PUNV.

By Lemma 12 Corollary 12 is a reformulation of Theorem 6.
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B Shuffled Runs of Computations in S-Automata

To represent SFl()lr)c( P) and SF,,¢(p) for () £ P C X* in terms of computations in

S-automata, now a kind of shuffle product will be defined on 24P. Guideline for
this definition is (237). Preparatively let P and Ap be defined as in section 4,
and let

{C}]_H([P){g} = {E}LH([P){c} = {c} for c € Ap, and
{elf0, £} {d(g,b, ')} =

({3 {d(g,b,9)N(f +9"sa, f + g ) U ({e(fra, SN (f + 9,0, ' +9)
for ¢(f,a, f),d(g,b,9") € Ap with (f,a,f’),(g,b,9") € Wp.

Then (132) and induction show

{a Ny} = IO e}, {23 {y} C 4p,
le| =[]+ |y| and Zp(c) = Zp(x) + Zp(y)
for z,y € Ap and ¢ € {z} 1) {y}. (243)

Definition 31.
Using (243), let the commutativ operation III(P) : 24P x 24P 5 24P 4 infiz no-
tation be inductively defined by

{3 e} := {3 P {c} := {¢} for c € Ap,

{e(f.a, IO {d(g.b.g)} =

({3 {d(g,0,9V N (f +¢'a, /' +9") U ({e(fra, fOITE}) (f + 9,0, /' +9)
fOT c(f,a,f’),d(g,b,g') € A[P with (fvavf/)a (g7b7g/) € Wp, and

xm®y = | ) {231 {y} for X,¥ C Ap.
rzeX,yeY

XTII®)Y is called the shuffled runs of X and Y.

The name shuffled runs is justified by the relation to section 5, as will be
demonstrated in the last theorem of this section.

Definition 31 allows to transfer Definition 29 to Ap:
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Definition 32.
Let SRFp : 24P — 24P gnd SRF[(Pl) 24P 5 24P pe defined by

SRFp(M) :=
{u € Ap| there exist w e M and v € Ap such that w € {u}1II®) {v}}

and

SRFY (M) =

{u € Ap| there exist w e M and e € Ep such that w € {u}1II"){e}}
for M C Ap.

The following two lemmas are the key to express SFp.op) resp. sp®)

pre(P) DY
SRFp resp. SRF[E,I).

Lemma 15.
For ¢,d € Ap and x € {c}III®){d} holds ap(x) € {ap(c)} IT{ap(d)}.

Proof (by induction).

Induction base

Let ¢ =¢ or d =¢. On account of commutativity of III®) let d =e. Then = = ¢
and ap(d) = ¢, which implies ap(x) € {ap(c)  II{ap(d)}.

Induction step

¢ # ¢ # d implies ¢ = d(f,a,f') and d = d'(g,b,g') with ¢/,d’ € Ap and
(f20,1"),(,b.9') € Wp. Therofore z € ({¢HII®){d (g,b,¢) ) (f +',a, /' +g') U
({ (f,a, fHOYIPLd V) (f' + g,b, f +¢'). On account of symmetry it is suffi-
cient to prove the induction step for z € ({¢/JII®™) {d’(g,b,¢)})(f+ ¢ a, f' +4'),
which implies z = 2/ (f 4+ ¢',a, f' +¢') with 2’ € {¢/}II®) {d'(¢,b,¢")}. Now by the
induction hypothesis ap(z’) € {ap(c')}II{ap(d' )b}, and therefore by Lemma 14
ap(z) € ({ap(d) Hil{ap(d")b})a C {ap()a}ll{ap(d")b} = {ap(c) } II{ap(d)},
which completes the proof of Lemma 15.

Lemma 16.
For u,v € pre(P") = (pre(P))™, w € {u}IlI{v}, c € ap *(u) and d € ap ' (v) there
exists x € {c} I {d} with ap(z) = w.

Proof (by induction).

Induction base

Let u=¢€ or v =¢. On account of commutativity of III let v =¢. Then w=u
and d = ¢, which implies ¢ € {c}III"){d} with ap(c) = w.

Induction step

u # € # v implies u =v'a and v =v'b with «/,v’ € pre(P") and a,b € X. There-
fore w € ({v/ }II{v'b})aU ({u' a}1I{v' })b, c = (f,a, f') and d = d'(g,b,g") with
d capt(u), d €apt(®), (f,a,f"),(9,b,9") € Wp, Zp(c') = f and Zp(d') = g.
On account of symmetry it is sufficient to prove the induction step for w €
({v/}I{v’'b})a, which implies w = w’a with w’ € {v/}III{v'b}. Now by the in-
duction hypothesis there exists 2’ € {¢/}IIT®){d’(g,b,¢")} with ap(z’) = w’. Then
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=2 (f+ga,f +¢') € {c} TP {d} with ap () = w, which completes the proof
of Lemma 16.

Theorem 21.
SF pre(py (M) = ap(SRFp(ap ' (M) for M C pre(P™) = (pre(P))™.

Proof.

For u € SF,(py (M) C pre(PY) there exist w € M and v € pre(PY) such that
w € {u}ITI{v}. Now, by Corollary 6 and Lemma 16 there exist ¢ € ap * (u) C Ap,
de€apt(v) C Ap, and = € ap ' (w) C ap ' (M) with = € {c}TII®){d}. This implies
¢ € SRFp(ap *(M)), which proves u € ap (SRFp(ap ' (M))).

For ¢ € SRFp(ap ' (M)) C Ap there exist « € ap (M) and d € Ap such that x €
{c}1II(®) {d}. Now, by Corollary 6 and Lemma 15 ap(c), ap(d) € (pre(P))™, and
ap(z) € {ap(c)}I{ap(d)}, which shows ap(c) € SFy,.e(py(M). This completes
the proof of Theorem 21.

The proof of Theorem 21 together with P = ap(Zg '(0)) (Corollary 6) and
(243) shows

Corollary 13.
SFp(M) = ap(SRFp(ap ' (M) N Zz1(0))) for M C PY.

Together with ap(Ep) = pre(P) and ap(Ep N Zg 1(0)) = P (59), the proofs of
Theorem 21 and Corollary 13 shows

Corollary 14.
SFL) (M) = ap(SRFY (a5 L (M) N Z51(0))) for M C P, and
SF{L) ) (M) = ap(SRFE (a5 (M)) for M C pre(P™) = (pre(P))".

Because of ap ' ((pre(P))* NV) = ap ' (V), Corollary 12 and Corollary 14 imply

Corollary 15.
SP(pre(P),V) iff SRFY (ap 1 (V) C ag L (V).

Because of Zg 1(0) C ag '(PY), it holds
ap (PYNV)NZgH(0) = ap ' (PY) Nag (V)N Z5(0)
=ap {(V)NZ5 1 (0). (244)
(243) implies
SRFSY (a5t (V)N 25 1(0)) € Z51(0). (245)
By (244) and (245) it holds
SRFY (ap H(PY N V)N Z5 1 (0) Capg L(PE V) iff
SRFY (a5 (V)N 25 1(0)) € ap ' (V) N Z5(0). (246)

Now, because of (246), Corollary 12 and Corollary 14 imply

69



Corollary 16.
SP(PU{e},V) iff SRES (ap ' (V)N Z5 1 (0)) C oz ' (V) N Z5 (0).

To show that Corollary 15 and Corollary 16 are equivalent to Corollary 8 and
Corollary 9, we prove

Theorem 22. SRF[(PD =Rp.

Proof.

Since SRFS) (M) = | SRFY ({z}) and RL(M) = | Rp({x}) it is sufficient
rxeM xEM

to prove SRngl)({x}) =Rp({z}) for each x € Ap. For this purpose we show the
following:

For x,u € Ap and e € Ep holds z € {u}IIIF){e} iff there exists a shuffled

representation b € 77[_&, (Ap) 0771_]:; (Ep) of x by v and é:= ZL; (e). (247)

Because of LW Nwp = 0 it holds:

be WLDl, (Ap) ﬁﬂ'L; (Ep) with my, (b) = € and m, (b) = u
iff b e {u}1l1{e}. (248)

Now (248) allows to prove (247) inductively using the inductive definitions of
1) and 1.

Induction base

Let w=¢ or e =e. We only consider e = ¢, because u = € can be treated analo-
gously. Then z € {u}III(") {e}, iff x = u, iff there exists a shuffled representation
be WL# (Ap) ﬂw@é(E"g) of z by u and € =e¢.

Induction step

u # e # e implies u = v/ (f,a,f') and e = €'(g,b,¢9') with v € Ap, € €
Ep, and (f,a,f"),(g,b,¢') € Wp. Therefore, z € {u}IIP){e} implies z €
(WO (9.0, ) ) (F + v, £+ ) U (o (fra PO} (4,0, [+
g’). On account of symmetry it is sufficient to prove the induction step for
v € ({u 3 I®{e (9,b,9")})(f +¢',a, /' +9'), which implies z =2/ (f +¢',a, /' +
g) with 2’ € {u/}IITI®){e/(g,b,¢')}. Now by the induction hypothesis =’ €
{u}II®){e/(g,b,¢')} implies the existence of a shuffled representation b’ €
e (A[P)ﬂwuj; (Ep) of &’ by v’ and € = Z[u[lp (¢/)(g,b,g'). But then b:=¥(f,a, )
is a shuffled representation of z = z'(f+¢',a,f +4¢') by vw=1u/'(f,a,f’) and
€= ZL; (el)(gvb7gl>'

Let now b be a shuffled representation of z by w = u/(f,a,f’) and
¢ =1y, (¢')(g:0,9'). Then b € {u}lI{e} = ({u {7 (¢')(g,0.9)})(f,a, f")U
({u’(f,a,f’)}Hl([P){Zuj;(e’)})(g,g,g’). On account of symmetry it is sufficient to
prove the induction step for b € ({u’}IH{Z[u; () (g,b,9") V) (f,a, f'), which implies

b="0b(f,a,f) with &’ € ({u'}IH{ZL; (¢')(g,b,¢9")}). Additionally b’ is a shuffled
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representation of x’ by v’ and é = Zuj; (e)(g,b,g") with z =2/ (f+¢',a, ' +¢').
Now by the induction hypothesis =’ € {u’'}III®){e/(g,b,¢')}, which implies
z=2'(f+9a,f +9g") € {(fa I {(g,b,g')}. This completes the in-
duction step and the proof of Theorem 22.

Analogously to the proofs of Theorem 22 and Theorem 16 a representation of
SRFp can be constructed like such in Theorem 16.
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