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Abstract. An increasing amount of cyber-physical systems within mod-
ern cars, such as sensors, actuators, and their electronic control units
are connected by in-vehicle networks and these in turn are connected
to the evolving Internet of vehicles in order to provide “smart” features
such as automatic driving assistance. The controller area network bus is
commonly used to exchange data between different components of the
vehicle, including safety critical systems as well as infotainment. As every
connected controller broadcasts its data on this bus it is very susceptible
to intrusion attacks which are enabled by the high interconnectivity and
can be executed remotely using the Internet connection. This paper aims
to evaluate relatively simple machine learning methods as well as deep
learning methods and develop adaptations to the automotive domain in
order to determine the validity of the observed data stream and identify
potential security threats.

Keywords: machine learning; automotive security; Internet of vehicles;
predictive security analysis; system behavior analysis; security monitor-
ing; intrusion detection; controller area network security.

1 Introduction

Each modern vehicle can be regarded as a system of interconnected cyber-
physical systems. When vehicles are to take over tasks which are up to now the
responsibility of the driver, an increasing automation and networking of these
vehicles with each other and with the infrastructure is necessary. In particular,
autonomous driving requires both a strong interconnectedness of vehicles and an
opening to external information sources and services, which increases the poten-
tial attack surface. An indispensable assumption, however, is that the vehicle can
not be controlled unauthorized externally. Thus, I'T security and data protection
are enabling factors for the newly emerging Internet of Vehicles (IoV). Practical
experiments [17] have already demonstrated that an attacker can gain remote
access to an in-vehicle Electronic Control Unit (ECU) and recent advisories such
as [10] also mention that public exploits are available.
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This work now examines various methods by which activities of an attacker
already inside a vehicle could be detected. The Controller Area Network (CAN)
bus is the standard solution for in-vehicle communication between the ECUs of
the in-vehicle cyber-physical systems. Whilst offering high reliability the CAN
bus lacks any kind of built-in security measures to prevent malicious interference
by an outside party. This makes it easy for an attacker with access to one ECU
to take over other critical cyber-physical systems within a vehicle. This could
be done by broadcasting forged commands on the network, to gain the required
knowledge, e.g. by running a fuzzing attack or to impair bus performance by
performing a simple Denial of Service (DoS) attack.

In this work, we implemented and analyzed anomaly detection methods which
can be applied to existing vehicle architectures as well as new designs by a soft-
ware update or plug-in module as proposed in [19] without the adoption of new
communication standards. The main contribution of this work is a comparative
assessment of different Machine Learning (ML) methods with respect to usability
for intrusion and anomaly detection within automotive CAN networks.

Section 2 introduces data sets from two different cars with and without at-
tacks that have been used to evaluate the compared methods. Section 3 provides
the background on four different ML technologies used in this work including
training, validation and performance assessments. Section 4 presents the results
of various experimental setups, while Section 5 discusses these outcomes and
gives recommendations on feasible approaches for the domain of in-vehicle net-
works. Section 6 describes related work, and Section 7 concludes this paper.

2 Data Sets

On the CAN bus every attached device broadcasts messages. At the same time,
devices listen for relevant information. We mapped the relevant data of CAN
messages to the following tuple structure: (time, ID,dlc,p1, ..., ps,type), where
time is the time when the message was received, ID comprises information
about the type and the priority of the message, dlc (data length code) pro-
vides the number of bytes of valid payload data, pl,...,p8 is the payload of 0-8
bytes, and type marks the message (attack versus no attack). In cases where
dlc < 8 we inserted dummy content in order to have a fixed tuple structure.
For the experiments in this work we used five different data sets, namely, ZOF,
HCLRpos, HCLRpyz2y, HCLRRpyM, and HCLRGeqr. The ZOE data set has
been collected from a 10 minutes drive with a Renault Zoe electric car in an
urban environment. It contains about 1 million messages and has been used
before in [22] to perform behavior analysis by process mining. This data set con-
tains no attack data. The other four data sets that we used have been published
by the “Hacking and Countermeasures Research Labs” (HCRL) [7]. These data
sets are fully labeled and demonstrate different attack types. The HCLRp,s
data set contains DoS attacks. For this attack, every 0.3 milliseconds a message
with the ID “0000” is injected. Conversely, in the HCLRp,., data set every
0.5 milliseconds a completely random message is injected, whereas HCLRrp
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Fig. 1. Attack influence analysis by linear graphs

and HCLRgeqr contain spoofing attacks. In these data sets every millisecond a
message with an ID related to gear respectively engine revolutions per minute is
injected. The ID and message does not change. The linear charts of the ZOF,
HCLRp,s, and HCLRgeqr data sets depicted in Fig. 1 show the composition
of legal data and attacks. Figure la shows that in the HCLRp,s data set DoS
messages decrease the number of legal packets, whereas Fig. 1b unveils a big
gap in the traffic time-line of the HCLRGeq,r data set which could probably
be a consequence of the spoofing attack. The linear charts of HCLRpy,., and
HCLRgRpy not shown here are similar to HCLRgeq: -

In order to get some more insight into the contents of the CAN data sets, we
have visualized them by radial time-intervals using the method described in [12].
Figure 2 shows differences between ZOFE and HC LR p,s traffic. The significantly
higher number of bars in Fig. 2a is due to a higher number of different IDs in
the ZOE traffic. In Fig. 2a the traffic without attacks has no outstanding bars
whereas in Fig. 2b solid orange bars are outstanding in comparison to other
bars. These bars represent DoS attacks which are decreasing the number of legal
messages in the first three intervals during the attack. The radial visualizations
of the other HCRL data sets with fuzzing and spoofing injections not shown here
did not provide more insights.

3 Machine Learning Methods

This section introduces the compared algorithms including training, validation
and performance assessments. The problem of detecting anomalies and attacks
in CAN data differs from most ML applications as it does not present a clear
classification problem. Anomalies and attacks are by nature unpredictable and
thus it is not possible to obtain representative data to train a classifier. Thus,
the approach taken in this work is to fit a model for the regular system behavior
which can detect deviations from the norm. One aspect of system behavior is
the range of values for the IDs and the payload of CAN messages, another
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(a) ZOE data without attacks (b) HCLRpos attacks (orange bars)

Fig. 2. Attack influence visualization by radial time intervals, each summarizing one
quarter of the period represented by the data set; traffic is separated in four radial time
intervals that consist of bars; each ID is represented as a bar whose height equals the
number of messages; bars consists of arcs which represent payload — the more messages
with same payload the higher is the arc; so solid (or almost solid) arcs depict messages
with few different payloads; transparent bars depict messages with big payload variety.

aspect is the temporal behavior, resulting in a novelty detection problem and a
time series analysis task. Some ECUs send messages periodically and thus are
relatively easy to validate. Even though the collection of a representative set of
anomalies and attacks is not possible it is beneficial to be able to detect and
prevent known types of attacks such as DoS or fuzzing attacks. This presents
a standard classification task where a model is trained to differentiate between
regular and anomalous CAN communications. Another aspect is the practicality
of possible solutions in real-world scenarios. For the deployment in vehicles the
trained models need to be able to validate the incoming data steam in real-time,
requiring efficient models and thus restricting their complexity.

The training of all models was done using the data sets introduced in Sect. 2
or subsets thereof in order to achieve reasonable training times. The data was
split into training and validation sets to get a realistic performance estimate for
each model. The validation of the Support Vector Machine (SVM) and standard
neural network models use accuracy and confusion matrices. The Long Short
Term Memory (LSTM) network was validated by predicting the next message
ID based on a window of preceding messages and comparing it to the actual mes-
sage. All experiments in this paper are written in Python 3.6. They utilize the
pandas [16] library to read and transform the data and scikit-learn [21]and
keras [6] with the tensorflow [1] back-end for the ML itself. For visualization
matplotlib [9] and seaborn [28] were used. We now give a short introduction
on how each of the methods operate.



3.1 Omne-Class Support Vector Machines

For anomaly detection One-Class Support Vector Machines (OCSVM) were used,
which are an adaption of classic SVMs to be trained with one class with the goal
of learning a border which encompasses the training data. OCVSMs are linear
classifiers but can make use of nonlinear kernels to represent more complex data
structures. They were used with success in [4,27] and this work used the hyper-
parameters suggested in [4]. For OCSVMs the sklearn.svm.OneClassSVM and
numpy [20] packages were used to filter out anomalous data from the training
set. The scikit-learn [21] metrics accuracy_score and confusion_matrix
were used to calculate scores from the predictions on the test set. To visual-
ize the results the metrics for all data sets were saved and displayed using a
seaborn [28] heat-map for the confusion matrices (Fig. 4) and a simple line
graph for the accuracy per subset size (Fig. 3).

3.2 Support Vector Machines

SVMs are linear “max-margin” classifiers as they try to find a hyper-plane sep-
arating the data with the greatest possible margin to the closest entry of each
class. They are linear but can use kernels to model nonlinear data structures
whilst maintaining low hardware requirements when classifying. As they are very
similar to OCSVMs the hyper-parameters from [4] were used here as well. Our
implementation of the regular SVMs is almost identical to the OCSVM, except
that sklearn.svm.NuSVC was used instead of sklearn.svm.OneClassSVM.

3.3 Neural Networks

Neural networks are the standard for deep-learning and can model very complex
nonlinear relationships. The most basic version is the fully connected neural
network. It utilizes an arbitrary number of layers with each layer supporting an
arbitrary number of neurons. Data is propagated from the input to the output
layer using weighted connections between the neurons of these layers, resulting
in very complex structures and thus a large amount of trainable parameters and
thus flexibility even for relatively small networks. They are usually trained using
some form of gradient descent and are prone to overfitting due to their great
flexibility. In consequence, the goal was to find the smallest possible network to
achieve a good accuracy. Therefore, the anomalous class was set to 0 to work
properly for binary classification and all features of the complete set were scaled
using the MinMaxScaler from scikit-learn [21] before training.

The neural networks were implemented using keras [6] Sequential model
from the keras.models package and keras.layers.Dense as its fully connected
layers. From initial test it was found that one hidden layer and one epoch is
sufficient for these data sets. For easier testing both layers used the same number
of neurons. Binary Crossentropy, Adam and Accuracy was used as loss, optimizer
and performance metric (see Listing 1.1).



Listing 1.1. Neural Network: Model and Training

def train(x: np.ndarray, y: np.ndarray, split, batch_ size,

neurons) :

# define and compile the model

model = Sequential ()

model . add (Dense (neurons, activation="relu
“shape[1],)))

model .add (Dense(neurons))

model.add (Dense (1, activation=’sigmoid’))

model . compile(loss=’binary crossentropy’, optimizer="adam’
, metrics=["accuracy’])

# train model

model. fit (x, y, epochs=1, batch size=batch size, shuffle=
True, verbose=0)

return model

’, input_shape=(x

Due to the good optimization of the tensorflow [1] back-end the model
wasn’t tested with different subset sizes but different neuron counts.

3.4 Long Short Term Memory Neural Networks

LSTMs are a derivation of recurrent neural networks for time sequence classi-
fication and prediction. They differ from standard neural networks by keeping
previous states and thus are able to capture temporal relationships. LSTMs in
particular keep a very recent as well as a long-standing state and are able to
detect relationships between relatively distant events as well as directly consec-
utive ones opposed to simpler recurrent neural networks which only remember
recent states. LSTMs are trained with time sequences, requiring to pre-process
the data sets into message sequences with the window size as a configurable pa-
rameter. Furthermore, they are not trained to classify a message as anomalous
or non-anomalous but to predict future messages or validate if new messages
concur with the learned behavior.

Training a LSTM to predict or validate new messages requires the time series
that is the training data to be transformed into a supervised learning problem.
This is achieved by using message sequences of a certain window size with the
message ID that followed it instead of single messages with a binary label. This
enables the LSTM to learn the behavior and temporal relationships between data
points. The original version of the code used was taken from [2] and has been
adapted and simplified for this work. The next pre-processing step is the trans-
formation of the time stamps to time deltas per ID, i.e. that the time column
gives the seconds since the last occurrence of that ID instead of a compara-
tively arbitrary time stamp. This is done using pandas [16] split-apply-combine
pandas.DataFrame.grouby and apply functions. To make the problem easier to
solve and thus the training times shorter the predictions were limited to the mes-
sage IDs instead of predicting /validating whole messages. To achieve good results
the IDs had to be transformed from simple numbers to categories keras [6] and
tensorflow [1] can properly handle. This process utilizes the scikit-learn [21]



LabelEncoder and keras [6] to_categorical functions which first encode the
IDs as labels and then transform them into a one-hot encoded numpy [20] array.
The last step before applying the time series transformation is a MinMaxScaler.
For usage with keras [6] the result of the time series transformation has to be
reshaped into a three-dimensional array containing the original data point, the
following ten steps and the corresponding label.

Listing 1.2. LSTM: Training

def train(x, y, batch size, neurons=10):
# define and compile the model
model = Sequential ()
model . add (LSTM(neurons , input_ shape=(x.shape|[1l], x.shape

(21)))
model.add (Dense(y.shape[l], activation=’softmax’))
model . compile(loss=’categorical crossentropy’,

optimizer="adam’, metrics=["accuracy’])
# train the model
model. fit (x, y, epochs=5, batch size=batch size, shuffle=
False, verbose=0)
return model

Listing 1.2 shows the actual training process which is quite similar to that of a
regular neural network. Differences are in the used loss function (categorical vs.
binary crossentropy) and that the data isn’t shuffled for LSTMs as that would
destroy any temporal relationships in the data.

The scoring is essentially the same as for the neural networks with the ex-
ception that the predictions are given as probabilities per category which have
to be transformed to the one-hot encoding in the test set by setting the category
with the highest probability to one and all others to zero.

4 Results

This section presents the results of all methods mentioned in Sect. 3. It will
introduce the metrics used and discuss the performance of each method with
regard to the nature of the data sets and validation methods.

4.1 One-Class Support Vector Machines

The OCSVMs were validated with subsets of the data sets described in Sect. 2
of different sizes between 5.000 and 300.000 messages using two different ap-
proaches: The ZOFE data set consists of non-anomalous data only, resulting in
a validation error that is equivalent to the false negative rate, i.e. it was tested
which percentage of the validation data was misclassified as anomalous. The
training portion of the HCRL data set was cleaned of anomalous data and the
trained model tested with both classes using the accuracy for performance as-
sessment as well as confusion matrices where appropriate with the true label on
the y-axis and the predicted label on the x-axis.
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Fig. 3. OCSVM results

The high accuracy on the HCLRp,s data set is expected as the anoma-
lous entries are easily detectable for any subset of the data. Figure 3a, however,
shows a slight worsening with increasing subset sizes. As the model was trained
with all fields, including the timestamps, the result suggest that the OCSVM
is detecting messages with a timestamp outside of the learned boundaries as
anomalous. Excluding the timestamps from training and testing confirms this
as it results in almost perfect accuracy for all subset sizes (see Fig. 3b). As seen
in Fig. 3, the OCSVMs accuracy on the ZOFE data is almost perfect. Consider-
ing that this data set only consists of regular data the good result comes from
a too great similarity of the training and test data sets. The result thus lacks
informative value about the effectiveness of OCSVMs in anomaly detection. The
performance on the HCLRp,.,, data set is pretty high on a subset of 50.000
messages and declines with increasing message count. This can be explained with
the randomized generation of the anomalous data in this set. With increasing
subsets the amount of completely random data increases as well, which in turn
increases the amount of anomalous data that looks like regular data by chance,
resulting in deterioration of the results. This is confirmed by the confusion ma-
trix in Fig. 4. The model predicts the regular class almost exclusively and the
performance changes are a result of changes in the test set rather than changes
in the model. The accuracy for the spoofing data sets first shows a slight dip for
50.000 samples and then recovers with larger subsets. The confusion matrices in
Fig. 4 show that this is purely due to changes in the test data set as the model
only predicts the regular class. The anomalous data in these sets only differ in
the timestamp. There is nothing in the ID or payload of these entries that makes
them distinct from other non-anomalous messages, making it impossible for a
SVM to separate between classes. The confusion matrices (Fig. 4) show heavy
bias towards the regular class for all data sets except HCLRp,s and thus that
all changes in the performance of the models are due to changes in the compo-
sition of the test data and not an improvements of the models itself. We also



Fuzzy

5000 Samples

Anomalous 0.0000 01359 |°5

04
00093 02
00

100000 Samples

True Class

Regular

50000 Samples

10
01197 08
0.6

04

08721 02

00

300000 Samples

0.0000

0.0081

True Class

Anomalous

Regular

5000 Samples

10
01699 08

06

04

08221 02

00

100000 Samples

0.0000

0.0080

50000 Samples

01880 |

300000 Samples

0.0000

00078

10 10 10 10
, Anomalous 0,000 01201 o8 00001 01642 08 , Anomalous 0,000 01879 08 00000 01778 08
kd 06 06 8 06 06
S 5
3 0 IR 0 04
P Regular 0.0088 08711 02 00081 0.8276 0 " Regular 0.0075 0.8046 0 0.0080 08142 0
. . 00 . . 00 . . 00 . . 00
et T o e et e o R
Predicted Class Predicted Class Predicted Class Predicted Class
Fig. 4. OCSVM confusion matrices
10
Fuzzy
5000 Samples 1o 50000 Samples o
» Anomalous 01272 00140 08 01195 0.0057 08
B 06 06
G
g 0t 04
z = 07975 g 85
3 Reguiar 00613 0797 0 00895 07854 0
goo 00 00
< 100000 Samples o 300000 Samples o
, Anomalous  0.1146 00079 08 01544 00035 08
8 06 06
5
— Dos g 04 04
£ 5
Fuzzy Reguer 01056 07719 . 01527 06833 0
Gear
I W < 00 s < 0o
a0 o a0 el
08 o 50000 100000 150000 200000 250000 300000 poo™ fed poo™ #ed
samples Predicted Class Predicted Class

(a) SVM without timestamps (b) SVM confusion matrix

Fig. 5. Results from Support Vector Machines

observed that the removal of the timestamps only has a noticeable effect on the
HCLRp,gs results. This can be explained with the mentioned bias as well as any
potential changes are shadowed by the almost exclusive prediction of the regular
class for all other data sets.

4.2 Support Vector Machines

SVMs are very similar to OCSVMs as described in Sect. 3.2, hence the method of
validation is as described for OCSVMs in Sect. 4.1 with the important difference
that SVMs are classifiers and thus were trained with regular and anomalous en-
tries. As SVMs don’t support training on data sets with only one class the ZOFE
data set is excluded from these results. Furthermore, the SVM implementation in
scikit-learn [21] is not multithreaded and had very long training times when
training with timestamps. For these reasons only results without timestamps
are presented. The results in Fig. 5a show that knowledge about the anomalous
entries significantly improves accuracy on the impersonation data sets, achieving
perfect classification on all but the HCLRp,., data set even with the smallest
subset. Looking at the very obvious distinction between regular and anomalous
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data points in these sets (see Sect. 2) the good performance is as expected as
the continuously worsening performance on the HCLRp,.., data set.

Considering that all anomalous entries for this set are random and the result-
ing possibility of entries falling within the value range of regular entries there are
no support vectors that can describe the difference comprehensively. Thus, the
accuracy declines with increasing subset size as more and more false negatives
are introduced which is shown in the corresponding confusion matrix in Fig. 5b.
Despite the clear decline the classification is still surprisingly good considering
the simple linear kernel and the random nature of the anomalous entries.

4.3 Neural Networks

The validation of the neural network was done with a standard train/test split
of the original data and the performance of networks with different amounts of
neurons compared in order to find the simplest possible network to solve the
problem. As neural networks are very flexible and even small ones already have



a good amount of variables this paper examines a network with only one hidden
layer for neurons counts of 2, 5, 10 and 20, going from extremely simple to fairly
complex models. The deep learning results are presented as confidence intervals
which are obtained using the bootstrap method with 50 iterations and a sample
size of 800.000 per iteration.

The very good to perfect results in Fig. 6 for all used data sets show the
great flexibility of neural networks. For all data sets the intervals reach 99%
even for the simplest network. The explanation for the good performance can be
found in the very simple structure of the anomalous entries for the HCLRp,s,
HCLRGeqr and HCLRRpys data sets: in each case there is one exact value
combination that has to be detected. Whilst the OCSVMs had problems (cf.
Sect. 4.1) with the HCLRGear and HCLRgpy data sets as their anomalous
entries values are within range of regular ones a neural network can learn to single
out this exact combination as being anomalous and thus achieve the seen results.
The intervals and the outliers in particular show that the networks performance
depends greatly on the samples used.

The case where the very good results are not as obvious is the HCLRpy..y
data set, as it has randomly generated anomalous entries which can not be
as easily differentiated from the regular ones, which is supported by the need
of at least 5 neurons to surpass the 99% accuracy threshold. In this case the
great flexibility of the network enables it to learn which value combinations, for
example in which range an ECU’s payloads are, are valid and thus to distinguish
them from the random entries very well. Another observation is that the intervals
are generally larger then for the other data sets. As we didn’t use stratified splits
this suggests that a certain minimum of both regular and random data is required
for the network to learn a good model.

The outliers seen in most results illustrate the general importance of having
the right data. Out results show that with a proper amount of data to train the
model neural networks are capable of detecting complex anomalies reliably.

4.4 Long Short Term Memory Neural Networks

To validate the LSTMs the whole data set was transformed to message sequences
as explained in Sect. 3.4 from which the first 80% were used to train bootstrap
networks while the remaining 20% validated the message ID predictions the
LSTM made. The results graphs (Fig. 7) show the networks performance for
a window size of 10 and each individual graph plots confidence intervals on
accuracy against neuron count of the LSTM layer. The LSTMs were trained and
tested without anomalous entries in order to measure their capability to model
the regular data stream.

For the HCLRp,s and the spoofing data sets the accuracy is quite good con-
sidering the relatively small samples and networks used as well as the complexity
of the problem. On all of these data sets the network achieves an accuracy up to
50% with only 5 neurons and up to 60% on the DoS data set with 20 neurons.
The very similar and good performance is due to equal and relatively low number
of regular message IDs in the sets at only 26. Performance on the HCLRp,, .y
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data set is noticeably but not significantly worse for the simplest LSTM and very
similar to the other HCRL sets for 10 or more neurons. The lower accuracy on
the LSTM with 5 neurons is due to the higher number of IDs at 38. The ZOFE
data set with its considerably higher number of message IDs at 110 performs by
far the worst at a maximum accuracy just above 40%. Considering that random
performance for 110 IDs is at only 0.9% an accuracy over 40% is more than 42
times better than random and thus still quite good. As the data set is from a
different source than the others (see Sect. 2) it suggest that the Renault Zoe has
more complex internals than the vehicles used to acquire the HCRL data sets.

For all tested data sets there is a clear correlation between message ID fre-
quency and the LSTMs categorical accuracy on that ID. The periodic occurrence
of these highly frequent IDs and the possible triggering of reactions to certain
periodic IDs explains the good predictions. Consequently, the worst performance
can be observed on infrequently occurring IDs, especially as they contain IDs
triggered by outside events and thus are simply unpredictable.



5 Discussion

The OCSVM results show very clearly that this comparatively simple method
of novelty detection only works for very basic anomaly detection. As OCSVMs
try to find a boundary which contains all or most of the seen data it can only
detect anomalies which differ significantly from the normal data in terms of raw
field values. Considering the observed heavy bias towards the regular class it can
still be useful: if it does classify a message as being anomalous there is a high
chance that it’s correct. Theissler [27] has also conducted a more sophisticated
approach. He used Support Vector Data Descriptors, a derivation of OCSVMs,
trained with message sequences instead of individual messages with better results
and very low to no false anomalies. The low false negative rate and the ability to
train them without anomalous data is a quite important aspect. Combined with
their relatively simple and thus fast classification makes them a good practical
choice for real-time classification in a vehicle.

Regular SVMs share the good results and speed of OCSVMs but require
anomalous data for training. Practical use would only come from the classifica-
tion of attacks which cannot be easily specified such as the fuzzing attack. For
any simple specification violating these specifications could be used directly to
verify the data stream without the need to train a model. Because of that and
the significant decline on performance of SVMs on the HCLRp,,.., data set the
real-world applicability of SVMs for the here evaluated use case is very limited.

Neural networks share the major drawback of needing anomalous training
data to be of any use but show impressive performances on all tested data sets.
The results suggest that they are able to learn the ECU behavior very well
and thus detect diverging data points. Even on the randomly generated fuzzing
attack their accuracy was close to perfect. Considering that only a very simple
network with one hidden layer and two neurons per layer is needed to achieve this
performance and thus classifying very fast, even without a graphics processing
unit, they could be a powerful tool to simplify automated specification checking.
In practice, they can be trained with regular and randomly generated data and
automatically derive specifications for non-anomalous data. This would require
additional testing on more diverse data sets in order to generalize this approach.

LSTMs are by far the most complex and thus computationally intensive of
the here presented learning algorithms. Our results show their ability to learn
the behavior at least partially and they have been applied to the more difficult
problem of prediction complete messages with success in [4]. The performance
shows diminishing returns when using more than 20 neurons and further simpli-
fication might be possible by excluding messages triggered by external events.
This opens the possibility of improving the network’s performance while reduc-
ing its complexity as in the present experiments the accuracy is clearly linked to
the number of message IDs. Considering all of the above points LSTMs present
a practical and potentially the most powerful approach of anomaly detection out
of the methods analyzed in this work.

It is interesting to note that none of the ML methods indicated the big gaps
in some of the data sets found by the visualization technique (cf. Fig.1b).



6 Related Work

A collection of possible intrusion points together with proposals for countermea-
sures such as cryptography, anomaly detection and ensuring software integrity
by separating critical systems are presented in [25,30]. Whilst the proposed mea-
sures should prove effective most of them require hardware changes, conflicting
with backwards-compatibility. CAN intrusion detection methods can be grouped
into four categories: (1) Work on detection of ECU impersonating attacks such
as [5,3] in most cases uses some kind of physical fingerprinting by voltage or
timing analysis with specific hardware. This work seeks to mitigate the gen-
eral problems of missing authenticity measures in CAN bus design and thus
is complementary to the work presented in this paper. (2) Work on detection
of specification violations assumes that the specification of normal behavior is
available and thus there is an advantage that no alerts based on false positives
will be generated. The specification based intrusion detection can use specific
checks, e.g. for formality, protocol and data range [13], a specific frequency sen-
sor [8], a set of network based detection sensors [18], or specifications of the state
machines [24]. (3) Work on detection of message insertions can be based on var-
ious technologies like analysis of time intervals of messages [23] or LSTM [29].
(4) Work on detection of sequence context anomalies comprises process min-
ing [22], hidden Markov models [14,19], OCSVM [27], neural networks [11], and
detection of anomalous patterns in a transition matrix [15]. In most cases the
authors of the above mentioned papers described experiments with one specific
method. However, because the authors use different data sets for their experi-
ments the results of their work are not directly comparable.

Therefore, we compared different ML algorithms with the same data sets. The
closest work to our paper is [4] and [26] which also provides results on method
comparison. OCSVM, Self Organizing Maps, and LSTM are used in [4] and
LSTM, Gated Recurrent Units (GRU), as well as Markov models are used in [26].
However, in [4] only one small training set of 150.000 packets from the Michigan
Solar Car Team was used, and [26] is more focused on attack generation.

7 Conclusion

In conclusion this study has shown the potential of ML for anomaly detection in
CAN bus data. Even simple linear methods like OCSVMs can yield good results
when detecting simple attacks while more complex neural networks are capable
to learn “normal” message content from CAN data. The most sophisticated mod-
els, namely LSTMSs, are able to learn ECU behavior adequately. Even the deep
learning approaches can be kept relatively simple meaning all analyzed methods
should be able to detect anomalies in real-time even on low-end hardware. Com-
bined with the existing research ML promises to be an effective way to increase
vehicle security. The injected attacks are relatively trivial in nature requiring
additional research with more diverse and complex intrusions as well as the
comparison of methods used in other research to the here present ones. Focused



tests, potentially in cooperation with vehicle manufacturers, have to provide fur-
ther insights in the prediction capabilities of LSTMs. Furthermore, real-world
tests on practical hardware are needed to confirm that real-time detection is in-
deed possible. Based on reliable anomaly detection, appropriate reactions such as
simple notifications or automated prevention measures need to be investigated.
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