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Glossary of Acronyms

AMSEC Attack Modeling and Security Evaluation Component

APA Asynchronous Product Automata

BAM Business Activity Monitoring

BPEL Business Process Execution Language

CEP Complex Event Processing

EPC Event-driven Process Chain

ERP Enterprise Resource Planning

GET Generic Event Translation

GUI Graphical User Interface

IDMEF The Intrusion Detection Message Exchange Format

ISO 8601 ISO (International Organization for Standardization) Representations of dates and times,
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PL Preamble Language
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XSD XML Schema Definition
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Executive Summary

Security analysis is growing in complexity with the increase in functionality, connectivity, and dynamics
of current electronic business processes. To tackle this complexity, the application of models is becom-
ing standard practice. Considering today’s frequent changes to business process models and instances,
model-based support for security analysis is not only needed in pre-operational phases but also at run-
time. In this document, we present an approach to support model-based evaluation of the current security
status of business process instances as well as to allow for decision support by analysing close-future pro-
cess states. Our approach is based on operational formal models derived from development-time process
and security models. This document exemplifies our approach utilising processes from the MASSIF
scenarios and demonstrates the systematic development and application of models for security analysis
at runtime.

To support such security analysis at runtime, we utilise formal models derived on informal or semi-
formal process and security models. The formalised process model subscribes to events from the MAS-
SIF complex event processing system, consumes them via the repository and reflects the current process
state. A security analysis model identifies current and close-future violations of the security policy. A
mapping model maps transitions in the security analysis model onto security alerts that are provided via
the repository to the decision support and reaction component and the MASSIF visualisation service.
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1 Introduction

The overall objective of the work presented here is to develop advanced techniques for the evaluation of
security-related events and their interpretation with respect to the known control-flow of the processes
involved and the required security properties. These techniques should enable methodologies for per-
forming dynamic predictive process analysis at runtime, detecting any prospective potential violation of
the required security properties. Finally the developed methods should be implemented into a prototype,
featuring a new generation, intelligent, multi-domain security event-processing and predictive security
monitoring and simulation, which will be delivered in D4.2.3.

1.1 Purpose & Scope

This deliverable is part of work package WP4.2. The particular objectives of this work package are

• to specify an executable event-driven process model triggered by real-time events,

• to develop methodologies for performing dynamic predictive process analysis at runtime,

• to provide techniques, featuring the ability to perform intensive simulation analysis under given
hypothesis, and

• to implement the provided techniques in an intelligent security event-processing engine.

The identification, correlation and aggregation of events is a core part in the detection of current secu-
rity threats during runtime. However, depending on the current security level or the process specification
itself, security-related events can have different effect on the security of different processes. Therefore,
in order to be able to interpret abstract security-related events in the context of specific security prop-
erties and processes, new techniques have been developed, which allow the analysing tool to perform
predictive process analysis at runtime.

This deliverable provides the results of the Tasks T4.2.2 “Process Model” and T4.2.3 “Dynamic Sim-
ulation and Analysis Methods”. This comprises a description of a formal security-aware process model;
specification of techniques for the identification of close-future security-threatening process states and
simulation analysis methods, which inspect the behaviour of complex/parallel processes under given hy-
potheses. The operational process model is supplemented by a model of the required security properties
that the corresponding process should fulfil. This security model is represented in form of a monitor
automaton.

Examples based on informal process specifications from the scenarios in [7], semi-formal process
descriptions provided in Event-driven Process Chain (EPC) syntax by Atos, and processes discovered
by external tools and provided in Petri net syntax served as input for the development and test of the

©2011-2013 by MASSIF Consortium 11 / 64
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implemented algorithms. The deliverable describes how the informal and semi-formal process models
can be converted to a formal event-driven process model. On the base of this model it is possible to use
different analysis and simulation techniques, which enable the evaluation of the security status during
runtime, based on realtime events. Further, it can detect potential violations of the security requirements
and generate respective alarms. Moreover, it allows to inspect possible effects of changes in process
specifications or security requirements by performing an intensive simulation analysis.

The developed methods and algorithms provide the basis of the dynamic simulation and monitoring
tool which will be implemented in the task T4.2.4.

1.2 Related Work

The work presented here combines specific aspects of security analysis with generic aspects of process
monitoring, simulation, and analysis. The background of those aspects is given by the utilization of
models at runtime [14]. A blueprint for our architecture of predictive security analysis is given in [34].

A formalised approach for security risk modelling in the context of electronic business processes
is given in [42]. It touches also the aspect of simulation, but does not incorporate the utilization of
runtime models. A refinement methodology and modelling language for the purpose of developing
secure electronic business processes based on early requirements analysis is proposed by [38]. The
proposal touches runtime enforcement of security mechanisms but does not allow for an evaluation of
the security status of business processes at runtime. A model-driven approach focusing on access control
for business process models is provided in [49]. It allows for the annotation of security goals to business
process models, the validation of annotated process models using model checking and the generation of
configuration artifacts for runtime components. Runtime analysis of security properties is not addressed
by this approach. Further current approaches for the analysis and specification of security properties of
business process models at development-time are given by [3, 4, 48, 15].

Approaches that focus security models at runtime are given in [27, 25]. Morin et. al propose a novel
methodology to synchronise an architectural model reflecting access control policies with the running
system [27]. Therefore, the methodology emphasises policy enforcement rather than security analysis.
The integration of runtime and development-time information on the basis of an ontology to engineer
industrial automation systems is discussed in [25].

Process monitoring has gained some popularity recently in the industrial context prominently accom-
panied with the term Business Activity Monitoring (BAM). The goal of BAM applications, as defined
by Gartner Inc., is to process events, which are generated from multiple application systems, enter-
prise service buses, or other inter-enterprise sources in real-time in order to identify critical business key
performance indicators, get a better insight into the business activities, and thereby improve the effective-
ness of business operations [24]. Recently, runtime monitoring of concurrent distributed systems based
on Linear Temporal Logic (LTL), state-charts, and related formalisms has also received some attention
[18, 23]. However, these works are mainly focused on error detection, e.g., concurrency related bugs. A
classification for runtime monitoring of software faults is given in [8]. Schneider [37] analysed a class of
safety properties and related enforcement mechanisms that work by monitoring execution steps of some
target system, and terminating the target’s execution, whenever it is about to execute an operation, which
would violate the security policy. Extensions of this approach are discussed in [5]. Patterns and methods
to allow for monitoring security properties are developed in [39, 40, 43, 13]. In the context of BAM
applications, in addition to these features we propose a close-future security analysis as it is detailed in
Section 4.2.1. Our analysis provides information about possible security policy violations reinforcing
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the security-related decision support system components.
Different categories of tools applicable for simulation of business processes including process mod-

elling tools are based on different semi-formal or formal methods such as Petri Nets [10] or EPC
[9, 26, 45]. Some process management tools such as FileNet [28] offer a simulation tool to support
the design phase. Also, some general-purpose simulation tools such as CPNTools [36] were proven to be
suitable for simulating business processes. The process mining framework ProM [22] supports plug-ins
for different types of models and process mining techniques. However, independently from the tools
and methods used, such simulation tools concentrate on statistical aspects, redesign, and commercial
optimisation of the business process. On the contrary, we propose an approach for on-the-fly dynamic
simulation and analysis on the basis of operational Asynchronous Product Automata (APA) models (cf.
Chapter 4). This includes consideration of the current process state and the event information combined
with the corresponding steps in the process model. We consider the framework presented in [22] on run-
time compliance verification for business processes as complementary to our work. In [34], we proposed
to use APA to specify meta-events, which match security critical situations, to generate alerts. However,
since this is slow and not easily usable by end-users, we decided to build the matching algorithm directly
into the Predictive Security Analyser (PSA). We use monitor automata to specify the operational security
requirements graphically (cf. Section 4.5.1).

1.3 Analysis of Security Requirements

According to requirements analysis and guidelines in Deliverable D.2.1.1 [7], besides issues like depend-
ability, redundancy and fault tolerance, the analysis of the four scenarios considered reveals the need for
enhanced security-related features of future Security Information and Event Management (SIEM) plat-
forms. These features go beyond what is currently supported by existing solutions. Overall a lack of
capability to model incidents at an abstract level is perceived. From the scenarios investigated, and the
current SIEM limitations observed, the guideline in Table 1.1 has been identified to be relevant for the
work within this deliverable.

Guideline Description

G.S.4. Predictive security
monitoring

Predictive security monitoring allows to counter negative future ac-
tions, proactively. There is a crucial demand for early warning ca-
pabilities. Moreover, the limitations with regards to the Managed
Enterprise Service point to the fact that dealing with unknown or un-
predictable behaviour patterns is not sufficient in current SIEM solu-
tions.

Table 1.1: Guidelines concerning security addressed by this deliverable

In terms of trustworthiness considerations, we assume that data we use for analysis are already
processed and provided by trustworthy MASSIF components.

In terms of legal considerations, we assume that data we use for analysis are already processed and
provided in a form compliant with the legal requirements stated in [7]. With respect to the specific
guideline G.L.5 “Least Persistence Principle. Only data strictly needed for security guarantee must be
kept, while unnecessary details must be deleted or made anonymous.”, we provide technical means,
which can be applied to fulfil the related Requirement 5.1 “Mechanisms must be provided to filter data

©2011-2013 by MASSIF Consortium 13 / 64
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containing information not relevant to security processing.”. For this purpose, we provide a schema
mapping, whereby all data containing information not relevant to security processing can be filtered out
(cf. Section 4.3.2).

1.4 Glossary adopted in this deliverable

As agreed by the MASSIF Consortium, the main reference of security glossary is provided by the
National Institute of Standard and Technologies (NIST) [20].

1.5 Structure of the document

The remainder of our paper is organised as follows. Chapter 2 describes our process modelling approach,
an appropriate formal representation and the tool support.

Chapter 3 describes the conversion of process specifications into the formal representation, gives ex-
amples chosen from the scenarios described in deliverable D2.1.1 [7], and describes process discovery
methods and tools as well as the transfer of the discovered process descriptions into the PSA. Chapter 4
describes the dynamic simulation and prediction methods as well as the monitoring of security require-
ments. Chapter 5 exemplifies our approach with two different processes from the MASSIF scenarios.
Concluding remarks and an outlook to the further work in upcoming deliverables are given in Chapter 6.

©2011-2013 by MASSIF Consortium 14 / 64



2 Process Models for Security Analysis

In order to support security analysis at runtime, we utilise formal models based on development-time
process, and security models. On the basis of sound methods for the elicitation and modelling of security
requirements provided in [17, 32] and an architectural blueprint described in [34], we document in this
deliverable our approach to analyse the security status of electronic business processes. A first sketch of
this approach has already been published in [11]. This deliverable substantially extends the descriptions
given before and includes major enhancements detailing the monitoring formalism, implementation,
evaluation, and context of our approach. In particular, it provides the base for the PSA, which is subject
of deliverable D4.2.3. The PSA prototype, which is currently in development in D4.2.3 will provide
advanced, application aware security monitoring capabilities to the MASSIF SIEM. Specifically, it will
support close-future process behaviour simulation and prediction of possible security violations.

This chapter starts with an introduction to informal, semi-formal, and formal process models in
Section 2.1. In Section 2.2 we describe the formal basis for the operational models which we use in
order to derive the prediction of the behaviour of the analysed processes in the near future. Finally,
in Section 2.3 we describe the Process Modeller (PM), which currently comprises a textual Preamble
Language (PL) editor, and a graphical Product Net (PN) editor.

2.1 Informal, Semiformal, and Formal Process Models

2.1.1 Introduction to EPC

Today, business process engineering, deployment and runtime control is supported by diverse tools,
including Enterprise Resource Planning (ERP) and Workflow Management (WFM) tools. Some of the
leading products, such as SAP R/3 1 and ARIS 2, use EPCs to model business processes [45].

The EPC notation is a specific language, which is used to represent business processes graphically
in form of a flowchart. An EPC graph shows the control flow structure of a process as a chain of events
and functions, i.e., an event-driven process chain.

The EPC notation was first introduced by Keller, Nüttgens and Scheer in 1992 [19]. In the original
publication [19] the basic constructs of an EPC process model are functions (sometimes also called
activities or actions) and events. Functions represent active components, i.e., activities, tasks or process
steps in a process, which are triggered by events. Events are passive, they represent the occurrence
of a state which describes the situation before or after a function is executed. Logical and , or , and
xor (exclusive or) operators are used to connect the basic constructs, in this way the flow of control is

1http://en.wikipedia.org/wiki/SAP_R/3
2http://en.wikipedia.org/wiki/Architecture_of_Integrated_Information_Systems
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specified.
There is no consistent notation of basic constructs and operators used in the different publications and

tools. The original publication [19] used rectangles to represent events, rounded rectangles to represent
functions and circles with different inscriptions for the logical operators.

In this deliverable we use rectangles with rounded corners to denote EPC functions and hexagons to
denote EPC events. There are many extensions to the original EPC notation available (cf. Figure 2.1).
However for our purposes the basic constructs and operators are sufficient.

The EPC language is targeted to be easy to understand and use by people which understand the
processes on the level of their business logic. These people are normally not familiar with formal speci-
fication methods. Therefore, a schema to transform an EPC model into an operational formal model was
developed (cf. Section 2.2).

2.1.2 BPEL

Another frequently used notation with similar purpose as EPC is Business Process Execution Language
(BPEL). A Web Services Business Process Execution Language (WS-BPEL) workflow definition in-
troduces a model of Web Services interacting by exchanging sequences of messages between busi-
ness partners. A WS-BPEL process and its partners are defined as abstract Web Services Description
Language (WSDL) services using abstract messages as defined by the WSDL model for message inter-
action. WSDL is an Extensible Markup Language (XML)-based language that can be used to describe
the functionality offered by a Web service.

BPEL is not used in the scenarios of MASSIF. However, in Section 3.2 we describe a transformation
of BPEL processes specifications into an operational formal model for use with the PSA.
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Figure 2.1: EPC Olympic Games
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2.2 Formal Basis for Operational Process Models

We now introduce formalised process models, which will be utilised to reflect the current state of the
system. Furthermore, the formalised process models will be the basis for the prediction of close-future
actions.

In order to analyse the system behavior with tool support, an appropriate formal representation has
to be chosen. In our approach, we use an operational finite state model of the behavior of the given
process. This can be based on APA, a flexible operational specification concept for cooperating systems
[30], or on PN, which are based on Petri nets [31] augmented by the addition of arc labels and transition
inscriptions [6].

2.2.1 Asynchronous Product Automata

An APA consists of a family of so called elementary automata communicating by common components
of their state (shared memory).

Definition 1 (Asynchronous Product Automaton (APA)).
An Asynchronous Product Automaton consists of

• a family of state sets Zs, s ∈ S,

• a family of elementary automata (Φt,∆t), t ∈ T and

• a neighbourhood relation N : T→ P(S)

S and T are index sets with the names of state components and of elementary automata and P(S) is
the power set of S. For each elementary automaton (Φt,∆t) with Alphabet Φt, its state transition
relation is ∆t ⊆ ��s∈N(t)(Zs) × Φt × ��s∈N(t)(Zs). For each element of Φt the state transition re-
lation ∆t defines state transitions that change only the state components in N(t). An APA’s (global)
states are elements of ��s∈S(Zs). To avoid pathological cases it is generally assumed that N(t) 6= ∅
for all t ∈ T. Each APA has one initial state q0 = (q0s)s∈S ∈ ��s∈S(Zs). In total, an APA A is
defined by A = ((Zs)s∈S, (Φt,∆t)t∈T, N, q0). An elementary automaton (Φt,∆t) is activated in a
state p = (ps)s∈S ∈ ��s∈S(Zs) as to an interpretation i ∈ Φt, if there are (qs)s∈N(t) ∈ ��s∈N(t)(Zs)
with ((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t. An activated elementary automaton (Φt,∆t) can execute a state
transition and produce a successor state q = (qr)r∈S ∈ ��s∈S(Zs), if qr = pr for r ∈ S \ N(t) and
((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t. The corresponding state transition is (p, (t, i), q).

APA provide the formal basis for the three syntactically different languages supported by the Simple
Homomorphism Verification Tool (SHVT). Details are described in Section 2.3.

2.2.2 Petri Nets

Definition 2. A net N = (S,T,F) consists of:

• a finite set S of places (graphical symbol: )

• a finite set T of transitions (graphical symbol: )
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• a flow relation F ⊂ (S× T) ∪ (T× S).

The elements of F are called arcs (graphical symbol: →).

The condition F ⊂ (S× T) ∪ (T× S) means that

• arcs lead from places to transitions (input arcs) or from transitions to places (output arcs); and

• at most, a single arc leads from a place (transition) to a transition (place).

The first definition of nets was given by C.A.Petri in his dissertation in 1962 [31].
Example:

s1

s2 s3

s4

t

Figure 2.2: Example net

S = {s1, s2, s3, s4}, T = {t}, F = {(s1, t), (s2, t), (s3, t), (t, s2), (t, s4)}
The places which are related by input arcs to a transition t are called input places of t. The set of

these places is denoted with •t. Hence,
•t := {x ∈ S|(x, t) ∈ F}.
Similarly, the number t• of all output places of t is defined as
t• := {y ∈ S|(t, y) ∈ F}.
In the considered example, the following holds
•t = {s1, s2, s3} and t• = {s2, s4}.
In a net, states are depicted by a marking of the places and “dynamics” by change of that marking.

Definition 3. A marking of a net is a mapping M : S→ N0, whereN0 is the set of all natural numbers,
including the value 0. This means that each place may carry any given number of tokens.

s1

s2 s3

s4

t

Figure 2.3: Example net with markings

In Fig. 2.3 the marking is given by: M(s1) = 2,M(s2) = 1,M(s3) = 1,M(s4) = 0
Changes in markings are effected by the occurrence of transitions.
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Definition 4. A transition t is enabled under a marking M , if each of its input places contains at least
one token, i.e., if M(x) ≥ 1 for all x ∈• t.

The transition t of the considered example is thereby thus enabled. An enabled transition can occur.
If an transition enabled under marking M occurs, the marking M is replaced by a successor marking
M ′. As a consequence of that, the marking of the input places of the transition decrements by one token,
the marking of the output places increments by one token and the marking of all other places of the net
remains unchanged. Hence, the following holds:

Definition 5.

M ′(x) := M(x)− 1 for x ∈• t \ t•,
M ′(x) := M(x) + 1 for x ∈ t• \• t, and

M ′(x) := M(x) for all other x ∈ S.

After the enabled transition of this example has occured, the marking of Figure 2.4 prevails.

s1

s2 s3

s4

t

Figure 2.4: Example net after transition has occured

As apparent in Fig. 2.4 (place s2), a place may be input place as well as output place of a transition.
The marking of such a place contributes towards the enabling condition of the corresponding transition,
but the occurence of the transition does not change it. Under the marking resulting from the occurence
of t in Fig. 2.4, the transition t is not enabled because place s3 contains no token (cf. Section 2.3.3).

2.3 Tool Support

In order to analyse the behaviour of a business or technical process with the PSA, an appropriate formal
representation has to be chosen. In our approach, we choose an operational finite state model of the
behaviour of the given process that is based on APA, a flexible operational specification concept for co-
operating systems [30]. For the specification of the APA model we use PL and a compiler and interpreter
which is provided by the SHVT.

The SHVT [30] is used to analyse APA models. It has been developed at the Fraunhofer-Institute
for Secure Information Technology. The SHVT provides components for the complete cycle from formal
specification to exhaustive validation as well as visualisation and inspection of computed reachability
graphs and minimal automata. The applied specification method based on APA is supported by this tool.
The tool manages the components of the model, allows to select alternative parts of the specification
and automatically glues together the selected components to generate a combined model of the APA
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specification. After an initial state is selected, the Reachability Graph (RG) is automatically computed
by the SHVT.

The tool furthermore provides an editor to define homomorphisms on action languages, it computes
corresponding minimal automata [12] for the homomorphic images and checks simplicity of the homo-
morphisms.

The SHVT currently supports three specification methods:

1. State Transition Pattern notion of APA

2. PN

3. APA

All three methods use basic PL syntax which is introduced in Section 2.3.1.
Method (1) is the currently favoured specification method. This method is introduced in Section 2.3.2

and is later on used as a base for the EPC specifications introduced in Section 3.1 and applied for the
Dam example in Section 5.1 and the Olympic Games example in Section 5.2.

Method (2) is introduced in Section 2.3.1 and later on used in Section 3.3 to convert the automatically
discovered processes into operational models for the PSA.

Method (3) is introduced and used in Section 3.2 for the operational specification of processes in
BPEL notation. This notation is not used in the examples from the MASSIF scenario but useful for the
coverage of other possible process input.

Several papers describing the theoretical background are available at
http://sit.sit.fraunhofer.de/smv/publications/.

2.3.1 Introduction to PL

We will now use an example from the SHVT tutorial [29] to introduce the basic notion of the PL.
The objective of this section is to show the most important steps in specification and analysis by

using this specification method.
Briefly said in this example data with a certain structure stored by agent A is transferred from agent

A to agent B in a non deterministic sequence.
At first a project file for has to be created by starting the project manager from the PSA main menu.

The used data structures and functions have to be specified in the so called preamble language of SHVT.
To add a preamble file to a project the folder for the preamble has to be selected (mouse-l). In our
example we can only select the displayed root node in the project tree. Afterwards the command File
> Add Preamble(s) from the menu bar has to be executed. The new preamble file can be opened by
executing the command Edit in the context menu of the newly created node in the project tree or by
clicking mouse-m on the new node. The source code can be copied into the preamble editor using
mouse-m if the text is selected :

defset tag = { ’t1’, ’t2’, ’t3’ };
defset data = { ’data’ };
defset message = pro ( tag, data );
defset sequence = seq (message);
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Compile the buffer with the command File> Compile Buffer. It’s also possible to compile selected
parts of this file using the command File > Compile Region. If no region is selected the definition at
the current cursor position will be compiled. The functions can be tested in the preamble editor. For
instance the following tests could be typed or copied into the test window below the editor pane:

(’t1’,’data’) ? Sequence;
sfind(’t2’,’t1’.’t2’);
sfind(’t3’,’t1’.’t2’);

The first call determines whether (’t1’,’data’) is an element of Sequence. The call of
the predefined function sfind determines the position of the element ’t2’ and ’t3’ in the sequence
’t1’.’t2’. sfind returns 0 if the element is not found. If the command Test > Test Buffer from
menu bar is executed the following results are displayed in the message pane of the preamble editor:

(’t1’,’data’) ? sequence; := (t1,data) element of sequence
sfind(’t2’,’t1’.’t2’); := 2
sfind(’t3’,’t1’.’t2’); := 0

It is possible to define own preamble functions. See [16] and for examples. If everything is OK
the Compile switch for the preamble must be activated (mouse-l) to include this preamble into the code
generation for analysis. The compile switch can also be used to toggle between different preamble
variants. In [33] the development of a project for a MASSIF example is described in detail.

2.3.2 APA Transition Pattern

After defining the basic functions and sets the state transition pattern can be defined. State transition
pattern are defined textual. So we add a new preamble file to our project. As the basic sets and functions
will be used the file should be compiled after the preamble with the basic definitions. Therefore the node
with the state transition pattern can be placed after the node with the basic sets and functions using drag
and drop. After the order is OK create a link from the state transition pattern node to the basic preamble
using the command Create Link in the context menu of the state transition pattern node and enter the
state transition pattern code:

def_role A {Data : sequence := (’t1’,’data’).(’t2’,’data’).(’t3’,’data’)};
def_role B {Data : sequence := :: };

def_state Network : sequence := ::;

def_trans_pattern A Send
(t,d)
(t,d) << A_Data,
sfind(t,’t1’.’t2’)>0,
(t,d)>> Network;

def_trans_pattern B Receive
(b)
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b << Network,
b >> B_Data;

Two roles are defined for the two agents A and B (def role). For every agent a local state compo-
nent Data is defined, which stores the data to be transmitted respectively will be received. Data will be
exchanged using the global state component Network.

In state transition pattern notion some special operators for reading, writing and testing state compo-
nents are available. Thus the transition pattern can be specified in a compact form. The transition pattern
operators (like >> and <<) are described in tabular form in [16]. Data is read and removed from state
components using the<< operator and added to the multiset of state components using the>> operator.
The function sfind is used to filter valid data.

2.3.3 Product Net (PN)

The PSA supports product nets (a special high-level Petri net class) for formal specification of process
behaviour. Thus models specified in Petri Net Markup Language (PNML) [47] produced by process
mining and discovery tools such as [44] can also be used instead of PL specifications (cf. Section 3.3).

PN result from augmenting the unlabelled nets by the addition of arc labels and transition inscrip-
tions. For details please refer to [6].

For the input of PNs we have integrated the PN editor of the SHVT into the PSA. The graphical
editor for PNs is described in [16].

Figure 2.5: Graphical PN Editor

We plan to provide an PNML import interface in the tool adaptation work package if this is required
by the scenario partners.
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3 From Process Descriptions to Operational Models

3.1 Converting EPCs to Operational Model

To illustrate how PL can be used to model an EPC process with APA semantics we will first introduce the
general idea and then give concrete examples from the MASSIF scenarios. Figures 3.1-3.4 show the basic
objects for EPC modelling used in the presented examples. or connectors will not be considered in the
following, since the semantics of this connector is not clear and there exist multiple interpretations [26].
In the case of the or connector the mapping of the EPC model has to be adapted to the concrete use case.
For the other EPC connectors with clear semantics a standard mapping based on several implemented
macros will be given. These pattern will enable the user to implement EPC models in PL event without
expert knowledge of PL. Listing 3.1 contains the basic definitions for EPC implementation which will
be explained below.

1 defset EPC_event_names = { e1, e2, e3, e4, e5, e6, e7, e8, e9 };
2

3 defset Connectors = { and, or, xor, nil };
4

5 defset Event_seq = seq(EPC_event_names);
6

7 defset EPC_state_set = pro( Connectors : connector, Event_seq : events);
8 defconst EPC_inactive >> EPC_state_set = (nil, ::);
9

10 defcase update_state_fu : pro (EPC_state_set, EPC_state_set, EPC_event_names)
11 >> EPC_state_set
12 update_state_fu (state, init_value,event) =
13 if connector(state) = nil then
14 ( connector(init_value), event),
15 if connector(state) = ’and’ & sfind(event,(events(state))) = 0 then
16 ( connector(state), imset(events(state).event))
17 else_error EPC_inactive();
18

19 def_role EPC
20 {exit : bool := false }
21 { active(state,input_events)
22 ( connector(state) = ’xor’ & l(events(state)) > 0) |
23 ( connector(state) = ’and’ & events(state) = events(input_events)) }
24 { activate(state,init_value,event)
25 state := update_state_fu(state,input_events, event) }
26 { activate_if(output_state,init_value,event,test_event)
27 when (event=test_event) {
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28 activate(output_state,init_value,event) } }
29 { deactivate(state)
30 state := EPC_inactive() }
31 { exit(event,test_event)
32 when (event = test_event) {
33 exit := true } };;

Listing 3.1: Basic Macro definitions used for EPC implementation

In line 1 and 3 and a set of events used and the EPC connectors are defined. The set Event seq
defines a sequence of event names, to provide non-deterministic binding of events to variables of this
type. The current state of an EPC is defined by the set EPC state set as a tuple of the corresponding
input connector an the sequence of input events. The input connector value nil indicates that the
corresponding EPC function is not active. The following macros defined for role EPC will be used in PL
transition pattern implementations realising the EPC implementation for prediction of future states:

active (line 21) checks whether the EPC function with current state state and a possible sequence of
input events assigned to input events is active. When a EPC function becomes active, state
must be initialised by the corresponding input connector and possible input events.

activate (line 24) tries to activate a EPC function based on the state of this function. The function
update state fu implements the check, whether the function is activated.

activate if (line 26) executes the macro activate if the selected event matches the connection to the
function to be activated.

deactivate (line 29) deactivates a EPC function corresponding to state.

exit (line 31) must be executed for output events not connected to a function. If the “real” system state
reaches this predicted state the EPC will be deactivated.

The application of these macros will be explained using the examples from Figures 3.1-3.4.
The naming conventions given in Table 3.1 will be used for every EPC function X in the PL code

examples.

PL name PL type Usage

EPC X Transition pattern Computation of output event if transition pattern is active

EPC X input Constant Input events of X

EPC X output Constant Output events of X

EPC X state State component Current state of function X

Table 3.1: Naming conventions

Listing 3.2 shows the PL implementation of the EPC in Figure 3.1.
Thus for every EPC function a constant, which defines possible input events and the corresponding

EPC connector, and a state component, which stores the current state of the EPC function have to be
defined. See, e.g., Line 1 and 2 in Listing 3.2. The function active checks based on this values whether
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xor - input events

e1 e2

��

f1

Figure 3.1: EPC xor - triggering events

the function is activated (Listing 3.1, line 21). The code for input events connected with function f2 in
Listing 3.3 differs to the xor example only in the value of the connector value of the input variable.
These pattern do not express the topology of the EPC. The topology of the diagram will be specified by
generation of output events in the transition pattern representing the EPC functions.

1 defconst EPC_f1_input >> EPC_state_set = (xor, e1.e2);
2 def_state EPC_f1_active : EPC_state_set := EPC_inactive();
3

4 def_trans_pattern EPC f1
5

6 ...
7 active(EPC_f1_active, EPC_f1_input()),
8 ...
9 deactivate(EPC_f1_active);

Listing 3.2: PL implementation of EPC Figure 3.1

and - input events

e3 e4

∧

f2

Figure 3.2: EPC and - triggering events
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1 defconst EPC_f2_input >> EPC_state_set = (and, e3.e4);
2 def_state EPC_f2_active : EPC_state_set := EPC_inactive();
3

4 def_trans_pattern EPC f2
5 ...
6 active(EPC_f2_active, EPC_f2_input()),
7 ...
8 deactivate(EPC_f2_active);

Listing 3.3: PL implementation of EPC Figure 3.2

xor - output events

e5 e6

��

f3

Figure 3.3: EPC xor - generating events

1 defconst EPC_f3_output >> EPC_state_set = (xor, e5.e6);
2 def_state EPC_f3_active : EPC_state_set := EPC_inactive();
3

4 def_trans_pattern EPC f3
5 (con,event,events)
6 ...
7 (con,events) ? EPC_f3_output(),
8 event ? events,
9 activate_if(EPC_..._active,EPC_..._input(), event,’e4’) },

10 activate_if(EPC_..._active,EPC_..._input(), event,’e5’) },
11 deactivate(EPC_f3_active);

Listing 3.4: PL implementation of EPC Figure 3.3

1 def_state EPC_f4_active : EPC_state_set := EPC_inactive();
2

3 def_trans_pattern EPC f4
4 (con,event,events)
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and - output events

e7 e8

∧
f4

Figure 3.4: EPC and - generating events

5 ...
6 activate(EPC_..._active,EPC_..._input(), e7) },
7 activate(EPC_..._active,EPC_..._input(), e8) };
8 deactivate(EPC_f4_active);

Listing 3.5: PL implementation of EPC Figure 3.4

The parallel execution of functions as shown in Figure 3.5 can be realised similar to the schema
presented for the four basic examples (see Listing 3.6). To achieve parallel synchronous execution the
PL code for the two functions is included in one transition pattern. The output events will be generated
for both functions as shown in the previous examples. Asynchronous execution could also be realised by
implementing a auxiliary function generating the appropriate events.

and - split

f5 f6

∧

e9

Figure 3.5: EPC parallel execution of functions

1 defconst EPC_f5_input >> EPC_state_set = (and, e9);
2 defconst EPC_f6_input >> EPC_state_set = (and, e9);
3 def_state EPC_f5_active : EPC_state_set := EPC_inactive();
4 def_state EPC_f6_active : EPC_state_set := EPC_inactive();
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5

6 def_trans_pattern EPC f5_f6
7 ...
8 active(EPC_f5_active, EPC_f5_input()),
9 active(EPC_f6_active, EPC_f8_input()),

10 ...
11 ...
12 deactivate(EPC_f5_active),
13 deactivate(EPC_f6_active);

Listing 3.6: PL implementation of EPC Figure 3.5

Beside the presented schema also a table oriented implementation supported by the PSA is possible.
The advantage of this approach is the capability of dynamic EPC extension. The EPC can be changed
directly by PL code or as described in Deliverable D4.1.3 [33]. The disadvantage is given by an more
complicated implementation. Partitioning of the code between different transition pattern is not possible
since there is only one pattern (cf. Listing 3.7). Thus extensions implemented in PL have to be part of
this pattern. Therefore, static EPC models should be implemented using the transition pattern schema
presented, while models with the necessity of dynamic EPC extensions can be realised by table spec-
ifications. The EPC table implementation will be explained on the example presented in Figure3.6 in
Listing 3.7.

e1 e2

��

f1

��

e3 e4

f2

Figure 3.6: Example EPC to illustrate the table based specification

1 defset EPC_event_names = { e1, e2, e3, e4 };
2 defset EPC_functions = { f1, f2, exit };
3 defset EPC_connectors = { and, or, xor, nil };
4 defset EPC_event_seq = seq(EPC_event_names);
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5

6 defset EPC_state_set = pro( EPC_connectors : connector, EPC_event_seq : events);
7

8 defconst EPC_inactive >> EPC_state_set = (nil, ::);
9

10 defset Event_to_Function_set = pro (EPC_event_names : fu_event, EPC_functions : evt_function);
11

12 defset Event_Function_seq = seq (Event_to_Function_set);
13

14 defset EPC_output_set = pro( EPC_connectors : out_connector,
15 Event_Function_seq : events_functions);
16

17 defset EPC_transition = pro ( EPC_functions : epc_function,
18 EPC_state_set : epc_state,
19 EPC_state_set : epc_input,
20 EPC_output_set : epc_output );
21

22 defset EPC_transitions = [ EPC_transition ];
23

24 defconst EPC_init >> EPC_transitions =
25 [
26 (f1, (nil,::),
27 (xor,e1.e2),
28 (xor,(e3,f2).(e4,exit))) ];
29

30 def_state EPC_state : EPC_transitions := EPC_init();
31

32 defset EPC_state_seq = seq (EPC_transitions);
33

34 defset EPC_sim_transition = pro ( EPC_event_names : sim_event, EPC_transitions );
35 defset EPC_sim_transition_seq = seq (EPC_sim_transition);
36

37 def_trans_pattern EPC transition
38 ()
39 successor_states := epc_transition(EPC_state),
40 (event,new_state) ? successor_states,
41 EPC_state := new_state;

Listing 3.7: PL implementation of EPC Figure 3.6

3.2 APA Semantics for BPEL Processes’ Specifications

To illustrate how PL can be used to model a WS-BPEL process we will begin with the translation of
the partner links and the variables definitions. In the following definitions as identifiers of data types
and state patterns we will use strings that are as close as possible to the corresponding tags and attribute
values used in the WS-BPEL and WSDL definitions.
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3.2.1 Data Type Definitions

variable definition Let consider the following definition of a WSDL message:

1 <message name = "mName">
2 <part name = "pName1" type="pType1">
3 <part name = "pName2" type="pType2">
4 <message/>

and a corresponding BPEL variable definition:

1 <variable name = "vName"
2 messageType = "mName"/>

Here we can assume that the types of the different WSDL part elements are xsd:integer, xsd:string or
xsd:boolean. If the corresponding type is not one of these then it must be in a similar way previously
defined as a structure of elements of simple types. The types integer and boolean are predefined in SHVT
as nat 0 and bool. BPEL depends on the use of WSDL. “For maximum interoperability and platform
neutrality, WSDL prefers the use of XML Schema Definition (XSD) as the canonical type system, and
treats it as the intrinsic type system” 1. So the mechanisms described in Section 4.3 can be used to define
mappings from BPEL data to PL data. Let us assume that the following PL types are created for variables
of the type xsd:string:

pName1 = {“t1 V alue1′′, “t1 V alue2′′, }
pName2 = {“t2 V alue1′′, “t2 V alue2′′, }

For better readability and transparency of our definitions we specify one additional type, namely the
value of the WSDL message name parameter:

mName type = {“mName′′}

Thus we can define a WSDL message as the cross product of the following sets:

mName = mName type× pName1× pName2.

If a variable attribute messageType has value mName then it is uniquely determined what entries
this variable must contain in order to be accepted as valid by the corresponding WS-BPEL process.
According to the syntax, used by the SHVT, we get the following specifications of the above given sets

1 defset mName_type = {’mName’};
2 defset pName1 = {’t1_Value1’, ’t1_Value2’};
3 defset pName2 = {’t2_Value1’, ’t2_Value2’};
4 defset mName = pro(mName_type : gettype
5 pName1 : getpName1
6 pName2 : getpName2);

PL syntax for the variable data type in Section 3.2.1
5

1Source:http://www.w3.org/TR/wsdl
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partnerLink definition Let consider the following WSDL portType, partnerLinkType and the
BPEL partnerLink definitions:

1 <portType name = "ptName"
2 <operation name = "opName">
3 <input message = "mName1"/>
4 <output message ="mName2"/>
6 <fault name = "faultName"
7 message = "mName3"/>
8 </operation>
9 </portType>

1 <partnerLinkType name = "ltName">
2 <role name = "roleName2">
3 <portType name = "namePT1"/>
4 </role>
5 <role name = "roleName2">
6 <portType name = "namePT2"/>
7 </role>
8 </partnerLinkType>

1 <partnerLink myRole = "roleName1",
2 name = "plName",
3 partnerLinkType = "ltName"/>

In the previous subsection we have described how we can translate a WSDL message into the PL syntax.
Therefore, we can now assume that we have already defined the messages setsmName1,mName2 and
mName3. First as a string constant we define the operation parameter:

ptName operation opName = {′opName′}

Then we define the input, output and fault types. Since they correspond to a given operation we
represent them as a cross product of the following sets:

ptName opName output = ptName operation opName×mName2
ptName opName input = ptName operation opName×mName1
ptName opName fault = ptName operation opName×mName3

According to its WSDL definition each port is defined by the message type which is sent to or from this
port.

ptName = ptName opName input ∪
ptName opName output ∪
ptName opName fault

A partnerLinkType characterises the conversational relationship between two services by defining the
“roles” played by each of the services in the conversation and specifying the portType provided by each
service to receive messages within the context of the conversation. During such conversation it is very
important for both sides to know exactly which partner they are speaking to and the role of this partner
during this conversation. For this purpose we specify a separate set ServiceRefType with (String)
constants, which will identify uniquely each partner, supposed to take part in the whole process. If a
service plays only one role then we can define it with the following set:

ltName = ServiceRefType× ServiceRefType× ptName
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The first parameter specifies the identifier of the service which sends a particular message, the second
specifies the identifier of the service to which the message is sent and the third is the message itself.

If a service, defined as a partnerLinkType, can play more than one role then it “listens” to more
than one port. For each port we define a separate set

ptName1LT = ServiceRefType× ServiceRefType× ptName1
ptName2LT = ServiceRefType× ServiceRefType× ptName2

. . .

Thus a partnerLinkType is exactly the union of all its “port” sets:

ltName = ptName1LT ∪ ptName2LT ∪ . . . .

The definition of the partnerLinkType data type using the PL syntax is given in Section 3.2.1.

1 defset ptName1_operation_opName = {’opName1’};
2 defset ptName1_opName_input = pro(ptName_operation_opName,
3 mName1);
4 defset ptName1_opName_output = pro(ptName_operation_opName,
5 mName2);
6 defset ptName1_opName_fault = pro(ptName_operation_opName,
7 mName3)
8 defset ptName1 = ptName1_opName_input ||
9 ptName1_opName_output ||

10 ptName1_opName_fault;
11 defset ptName1LT = pro(Partners,
12 Partners,
13 ptName1PT);
14

15 / * The second p o r t t y p e s e t ”ptName2LT” i s
16 d e f i n e d i n t h e same way * /
17 defset ltName = ptName1LT || ptName2LT;

PL syntax for the partnerLinkType data type in Section 3.2.1

As we have already mentioned an APA can be seen as a family of elementary automata, “glued” together
by shared components of their state sets and they can “communicate” by changing shared state compo-
nents. In our model we consider the sequence of messages between the workflow and each of its partners
as a state component. Since each partnerLink corresponds to a port type for the messages between the
corresponding partner and the workflow, we interpret each partnerLink definition as a “container” for
these messages, and thus as a global state component. We define one additional global state component
for event messages. According to the PL language and our interpretation, a WS-BPEL partnerLink

definition with attribute partnerLinkType = "ltName" is given by

1 / * l t N a m e s e q i s a s e q u e n c e o f e l e m e n t s o f t y p e l tName * /
2 def_state plName : ltName_seq = ::;

PL syntax for the partnerLinkType data type in Section 3.2.1
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3.2.2 State Transitions and Roles in the Operational Model

Roles and state transitions. To each WSDL partnerLinkType, defined of the workflow, and the work-
flow itself we assign a separate role. We specify one additional role EventHandler and each transition
pattern, assigned to this role specifies each event that is handled by the event handler or a onAlarm WS-
BPEL tag. Roles in PL are defined using the keyword def role.

1 def_role roleName
2 {Local State Components}
3 {Macro Definitions};

Role definition in PL syntax

Transitions and state patterns of a role are instantiated according to the set of symbols defined by using
the keyword def pattern bind. This allows us to model workflows with multiple partners, assigned to
one role (e.g. multiple client services which send requests to a workflow or different service partners
which have to be contacted given that different events have occurred). The local state components, that
can only be accessed by the automata of an instance of a partner, assigned to this role, are used to model
the memory of that instance of a partner. All actions (elementary automata) executed in a certain role are
assigned to this role in the definition of a transition pattern.

As a single step, which changes the state of the APA, we consider the occurrence of any WS-BPEL
activity or the occurrence of a fault or event (caught by an eventHandler). When one of activities
receive, reply, invoke occurs, then the input/output/error message is sent to the corresponding partner
(i.e. elementary automaton) via one of the global state components. If an error is returned by some of
the partners and caught by faultHandlers then the corresponding state transition will occur.

Each single step is specified in a separate transition pattern assigned to one of the existing roles
(partnerLink). The patterns specify conditions for state transitions and changes of the states of state
components of the particular partner and of the shared state components. In order to define such patterns
the function def trans pattern is used.

1 def_trans_pattern roleName pattern_label
2 (x1,x2,x3,...,xn)
3 allocations,
4 predicates,
5 actions;

PL syntax used to define transition pattern

State transition pattern pattern label will be created and assigned to role roleName followed by the used
local variables. In the next lines allocations, predicates and actions can be specified. To perform state
transition all predicates must be true.

Since each partner can send or receive messages of a particular data type we have defined the global
state components (the “containers” of such messages), so that they can store only messages of the cor-
responding type. Thus the only thing we have to do to assure that a state transition occurs is to check
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whether the corresponding global state component has stored a suitable (for the corresponding partner)
message.

Initial state. To model a WS-BPEL process, it is necessary to give the initial state, of the APA model that
is, the content of all global state components the process starts with. Since in the initial state of such pro-
cess there are no messages sent or received by the partners we initialise the all global state components
as the empty sequence (::).

3.2.3 Example of an Operational Model of a BPEL Process

Figure 3.7 shows the structure of an APA modelling a simple centralised BPEL process. The circles
represent state components and boxes are elementary automata. In the scenario 5 partners take part: cen-
tralCoordinator (the workflow engine), commPartner1 (partner 1), commPartner2 (partner 2), comm-
Partner3 (partner 3) and commPartner4 (partner 4). Each partner taking part in the scenario is modelled
by one elementary automaton that performs the partner’s actions. The state components centralCo-
ordState1, centralCoordState2, centralCoordState3, centralCoordState4 store local data for the central
coordinator of the process and the state components localState1Partner1, localState2Partner1, local-
State3Partner1 store data available only to partner1. The neighbourhood relation (graphically repre-
sented by an arc) indicates which state components are included in the state of an elementary automaton
and may be changed by a state transition of the elementary automaton. For example, automaton cen-
tralCoordinator may change its centralCoordState1 and centralCoordState2 but cannot read or change
the state component localState1Partner1 of the automaton of partner1. The state components comm-
Partner1, commPartner2, commPartner3, commPartner4 are globally shared between all the partners
participating in the process. They are used for communication (e.g. service calls) between each partner
and the central partner. A message is sent by adding it to the content of one of the state components and
received by removing it from the corresponding state. The state component eventStream is also globally
shared and is used to transport triggered events to the services which have to receive them.

eventStream

localState3Partner1localState2Partner1localState1Partner1

partner4

partner3

partner2

partner1

commPartner4

commPartner3

commPartner2

commPartner1

centralCoordState4

centralCoordState3

centralCoordState2

centralCoordState1

centralCoordinator

Figure 3.7: APA model of a BPEL process specification
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3.3 Process Discovery

In order to assist the MASSIF scenario providers in specification of application processes, the PSA
supports the use of process specifications, which have been generated by external tools. Specifically, it
is possible to use a Petri net specification, which has been generated by the ProM [44] tool.

ProM [44] is a project by the process mining group at Eindhoven Technical University [1]. The
current open source version of the ProM tool [2] uses Extensible Event Stream (XES) an XML-based
standard for event logs as input. XES provides a format for the interchange of event log data between
process mining tools and applications (cf. Figure 3.8 2). Tools like XESame 3 and Nitro 4 enable domain
experts to specify how the event log should be extracted from existing systems and converted to XES
[46].

Figure 3.8: XES standard for event logs

As a proof of concept, we have used example data from the mobile money scenario and converted the
logfile to XES format. Then we used the ProM tool with this logfile and discovered the process shown
in Figure 3.9.

The transfer of this discovered process to the PSA was done manually using the graphical PN inter-
face and resulted in the process description depicted in Figure 3.10.

2Source: http://www.xes-standard.org/
3http://www.processmining.org/xesame/start
4https://fluxicon.com/nitro/
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Figure 3.9: Process Discovery in FT Scenario
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Figure 3.10: Discovered Petri Net from Fig. 3.9 transferred to PN

©2011-2013 by MASSIF Consortium 37 / 64



4 Simulation and Prediction

4.1 Architecture of PSA

The PSA block diagram is depicted in Figure 4.1. The quality of the performed analysis strongly depends
on the quality and granularity of the process description as well as on the appropriate security event
specifications.

Figure 4.1: Architecture of the Predictive Security Analyser

The PSA comprises two components to derive the specifications of security events and processes,
namely the Security Event Modeller (SEM) and the PM components (cf. Figure 4.1).

Prior to the start of the engine, the process description and security goals/events will be transformed
into PSA understandable models, which are going to be used for the continuous real-time analysis and
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close-future simulation. This will be done in the security event modeller and the process modeller com-
ponents. They will communicate with the model repository, which contains the attack models of the
Attack Modeling and Security Evaluation Component (AMSEC) tool [21] and the previous models com-
posed by the modellers. The security model and process model interfaces will provide access to the
repository for the PSA engine. The interpreted models will be imported into the PSA in the initialisation
phase.

4.2 Reachability Analysis and Prediction of Behaviour

Reachability Graph of an APA Model. Formally, the behavior of our operational APA model of the
business process is described by a Reachability Graph (RG). In the literature, this is sometimes also
referred to as Labeled Transition System (LTS).

Definition 6 (reachability graph). The behavior of an APA is represented by all possible coherent se-
quences of state transitions starting with initial state q0. The sequence

(q0, (t1, i1), q1)(q1, (t2, i2), q2) . . . (qn−1, (tn, in), qn)

with ik ∈ Φtk , where Φtk is the alphabet of the elementary automaton tk, represents one possible se-
quence of actions of an APA. State transitions (p, (t, i), q) may be interpreted as labeled edges of a
directed graph whose nodes are the states of an APA: (p, (t, i), q) is the edge leading from p to q and
labelled by (t, i). The sub-graph reachable from q0 is called reachability graph (RG) of an APA.

In code generated from the EPC process descriptions we used the set of possible output events of an
action as the alphabet of the elementary automaton representing the action. So the interpretation i is the
output event. An example (cf. Section 5.1 Figure 5.4) for a state transition is:

(M -2, (Wait for change, event = close gate),M -9).

The parameters of this state transition are stateM -2, the tuple composed of the elementary automaton
Wait for change and its interpretation event = close gate , and the followup state M -9.

Reachability Graph of an Product Net (PN) Model. The complete dynamics of a marked net is
depicted by means of the RG. A RG is a directed graph the nodes of which are markings of the net
produced by the occurrence of transitions - starting from the initial marking. From a marking M an
arc (labelled t) leads to M ′, if, and only if, the transition t is enabled under M and the occurrence of
t generates a successor marking M ′. Markings under which no transition is enabled are called dead
markings. The derivation of RGs is called reachability analysis.

For the examples presented in this deliverable it was possible to compute the complete RG (cf.
Section 5.1 and Section 5.2).

4.2.1 Prediction of close-future Process Actions

The process execution trace and the current state of the process is computed using the measured events.
As the process description and the data model of the events is formalised in the process model, a RG

can be computed starting with the current state of the process. The RG contains possible future actions
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to be predicted. The abstraction level of the future events to be predicted determines the complexity of
the computed RG. In Section 4.3 the mechanisms to map system events to appropriate PL code will be
described. Section 4.2.2 will explain the possibilities to synchronise the simulation model with the state
of the monitored process and the environment of this process, independent of the process events send to
the PSA.

4.2.2 Synchronisation of Model State with Monitored Process

The PSA simulates processes in the MASSIF system on a more abstract level. This level has to be
specified by an expert for the process domain. During runtime it’s necessary to synchronise these two
levels. Naturally, it can occur that the process and the abstraction level of the model do not fit together
perfectly. Mechanisms to deal with the uncertainty of the combination of the concrete process and the
simulation process level are explained in Section 4.4 and [33]. The handling of problems as unknown
events, unexpected process behaviour, and missing events will be described there. For the start of an
simulation the current system state (q0, 4.2) has to be defined. From this state according to the adjusted
simulation options the PSA computes a part of the RG as described in 4.2. Now events coming from
the Event Interface (cf. Section 4.1) trigger the re-computation of this graph to keep the model state
synchronous with the process and system state. The PSA provides receiving of two types of external
events:

Events matching model events: These events will be mapped to the process model and the PSA tries
to find successor states already computed to mark them as current process state. The methods to
be applied in cases when no successor evnts are found are described in section 4.4.

Events changing the state: Changes of the environment which are relevant for the process model or the
monitoring process, e.g., the patch level of a certain host could be part of the model and checked
by the monitoring automaton or even tested in the process model. After the reception of such an
event the state of the model will be changed according to the adjusted simulation options and the
RG will be recomputed from the current system states.

4.3 Event Model

4.3.1 Feature Selection

The PSA is capable to select the relevant attributes of the events needed for simulation.
As an example, the selection (green check marks) of nodes in the XML tree shown in Figure 4.2

will reduce the XML-code in Listing 4.1 to the event shown in Listing 4.2. The produced output can be
mapped to a PL list as shown in Listing 4.3. The PL standard function getVal provides access to the
data described by the path of the selected attributes (cf. [16]). The mapping of the “real” data to PL code
will be explained in the next section.

Besides the XML format described here, other formats (e.g., for the events from the MASSIF
database) will be supported by the PSA prototype (Deliverable D4.2.3), which is due in Month 27 of
the project.
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Figure 4.2: Feature selection

1 <idmef:IDMEF-Message version="1.0">
2 <idmef:Alert messageid="abc123456789">
3 <idmef:Analyzer analyzerid="bc-fs-sensor13">
4 ....
5 </idmef:Analyzer>
6 <idmef:Source>
7 XXXX
8 </idmef:Source>
9 </idmef:Alert>

10 </idmef:IDMEF-Message>

Listing 4.1: IDMEF input event

1 <idmef:IDMEF-Message version="1.0">
2 <idmef:Source>
3 XXXX
4 </idmef:Source>
5 </idmef:IDMEF-Message>

Listing 4.2: Reduced IDMEF event

1 [IDMEF-Message [Source XXXX]]

Listing 4.3: PL data representing IDMEF event
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4.3.2 Mapping, Normalisation and Transformation to PL

The PSA provides a Graphical User Interface (GUI) to define a mapping from events delivered to the
PSA to internal PL notation of data. The PL language offers restricted data types: numbers, symbols, and
sequences, lists and tuples of these basic data types (cf. [16]). To be able to handle information which
is hard to express using the basic data types, the PSA has been extended to be able to convert arbitrary
event data to PL symbols which could not be expressed in the original PL syntax. The only way to create
such symbols is to use the corresponding mapping. The PSA creates the interface for the mapping for a
XSD schema. The procedure how to integrate such a schema into a PSA project is described in a step by
step tutorial in [33]. The XML data described by the schema will be mapped to PL lists representing the
XML data in the mapping. To reduce the complexity of the RG computed in simulation only data really
needed in the simulation or in generated alarms should be selected in the mapping. The default for all
basic XML data will be to exclude the data from the mapping. Every data to be mapped to PL data has
to be explicitly selected. The following default mappings are available:

Normalisation: A XML Nmtoken is any mixture of name characters 1. PL syntax is more restrictive
for the characters which can be used in identifiers: ’ ’, ’$’, the set of digits { 0, 1, ..., 9 }, and
the characters { a, b, ..., z, A, B, ... Z }. All characters of XML Nmtokens not in this list will
be deleted by the normalisation function, except ’:’ and ’’. ’:’ and ’ ’ which will be mapped
to ’ ’. The normalisation function will be applied to all XML tokens involved in the selected
mapping. For XML enumerations normalisation will be the default mapping if the corresponding
XML element is selected and the corresponding PL set will be generated.

Use String: Any data will be converted to a PL symbol. The symbol will be presented in the original
form without deletion of characters and can be bound to PL variables, but can’t be used as a PL
constant in PL code. This mapping should be avoided if possible.

Classification: A list of regular expressions can be used to assign data to PL symbols. Figure 4.3 shows
a simple example for such a mapping. Strings containing the distribution name or the OS name and
additional information (“.*” in the regular expression) not relevant for simulation will be mapped
to the OS name. Every pattern entered will be added to the list in the lower window. The regular
expressions will be evaluated in the order of this list. A list item can be moved to the top of
the list by selecting it with mouse-l. The corresponding PL set including the defined symbols
will be generated. For XML elements of the type integer instead of regular expressions a range
specification in the form n1− n2 has to be entered.

Time to Universal Time: Converts the time format according to ISO (International Organization for
Standardization) Representations of dates and times, 1988-06-15 (ISO 8601) to universal time 2.

The PSA provides the capability to load also other predefined mappings. The additional mappings can
be put into the file patch.lisp in the installation directory or into the file .pnmrc in the home directory
of the user who starts the PSA. Listing 4.4 shows some Lisp [41] code examples for such mappings.
The first parameter of the function add-mapping defines the menu item for the PSA GUI. The second
parameter defines a string which must match the XML type of the corresponding element. The Lisp
implementation to the conversion of a XML data field to a PL symbol is defined in the third parameter.

1http://www.w3.org/TR/2000/REC-xml-20001006
2Non-negative integer - the number of seconds since midnight, January 1, 1900 Greenwich Mean Time (GMT) in seconds
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Figure 4.3: Mapping: classification menu

The implementation is defined in form of an anonymous function (lambda) with one parameter which is
used to pass the XML data.

The fist mapping shows how to define a string classification without using the classification menu.
The menu item “Check String Length” will be available in every context menu of XML strings. The sec-
ond example (cf. Line 5), which can be used to extract seconds from Network Time Protocol (NTP) time
stamps explains the usage of regular expressions in Lisp (cf. Function reg-match). The classification
of date/time strings is explained by the third example in Line 14 3.

1 (add-mapping
2 "Check String Length" "string"
3 #’(lambda (string) (string->pnet-symbol (if (> (length string) 100) "long_string "
"normal_string"))))

4

5 (add-mapping
6 "Use NTP Seconds" "ntpstamp"
7 #’(lambda (ntp-timestamp)
8 (multiple-value-bind (ok match sec sec_fraction)
9 (reg-match "0x([A-Fa-f0-9]{4})([A-Fa-f0-9]{4}).0x[A-Fa-f0-9]{8}" ntp-timestamp)

10 (cond (ok
11 (read-from-string (format nil "#x˜a" sec)))
12 (t (string->pnet-symbol "false"))))))
13

14 (add-mapping
15 "Office Time" "dateTime"
16 #’(lambda (date-time-string)
17 (let ((time (parse-iso8601 date-time-string)))
18 (cond (date-time-string
19 (let ((start (get-universal-time (merge-date-times "08:00" time)))
20 (end (get-universal-time (merge-date-times "18:00" time)))
21 (utime (get-universal-time time))
22 (wday (date-time-ywd-day time)))
23 (cond ((and ((>= wday 1) (<= wday 5) (>= utime start) (<= utime end)))

25

3For more functions related to time objects see http://www.franz.com/support/documentation/current/
doc/classes/date-time/date-time.htm
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24 (string->pnet-symbol "true"))
26 (t (string->pnet-symbol "false")))))
27 (t (string->pnet-symbol "error"))))))

Listing 4.4: Additional mappings

4.4 Behaviour in Uncertainty Situations

Normally, alarms produced by PSA will be generated by an monitor automaton as described in Sec-
tion 4.5.1. Beside this, the PSA offers the option to generate alarms directly in the simulation using the
PL standard function alarm which gets one PL symbol as a parameter. So unexpected situations which
do not match the expected process behaviour can be modelled directly in the process model implemented
in PL. In the current PSA version the alarm will only be logged on the console. The final format and
the mechanisms for the delivery of alarms to the MASSIF system will be part of deliverable D4.2.3. The
following cases related to uncertainty situations are handled by the PSA.

Missing events: Here, we consider the situation, when an event is detected, which is known, but not
expected at this time in the current process state (as considered in the model).

If certain events which are included in the PSA model are not modelled, deadlocks in the simu-
lation might occur. The PSA tries to solve this problem by trying to match later events with the
computed RG. In this case, more than one current state might be computed. The depth of the
search tree for such cases can be adjusted in the simulation options. Such cases can also occur,
if the model does not fit to the process model. For such cases, semi-automatic model adaptation
as described in [33] provides a solution. The decision what’s the appropriate solution depends
on whether the completeness of the event stream or the completeness of the model is more reli-
able. The best solution might be first to adjust the model ([33]) with a big training set and to use
heuristics for recovery after this process.

Uncertain model state: During simulation it’s possible that more than one current system state is de-
termined. PSA tries to eliminate such states later in the prediction process if they do not match the
incoming events.

Manual recovery: Missing events in combination with state elimination can lead to a divergence be-
tween process state and model state. The command Change State allows to adapt the model state.
This solution is only applicable if it’s possible to determine or to change (e.g. restart) the current
process state.

Unknown Events: Here, we consider the situation, when an event is detected which is associated to the
current process but out of scope of the reachability analysis. In this case a user decision is required.
In case the process has changed, this should be reflected in the model by inserting an additional
event in the process model. Otherwise an alert should be generated. In the first case, the modified
process description will be used in further analysis.

This problem can be treated by the semi-automatic mechanisms described in [33].

For all problem cases of the list above, it’s possible to produce alarms if the corresponding problem can’t
be solved. Also events, which produce the problem, can be ignored.
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4.5 Monitoring Security Requirements

This section presents the security analysis model applied at runtime to identify security relevant states of
the current state of the business process.

In addition to the predicted process behaviour, the security analysis model is needed in order to
identify security critical situations. We use monitor automata as notation for our security analysis model
to provide an operational specification of the security requirements model. These automata analyse the
behaviour of the formalised process model during runtime and identify security relevant states of the
formalised process model.

4.5.1 Monitor Automata

The monitor automaton concept has been developed to reflect attributes concerning all parameters of RG
state transitions. Different security properties might be monitored simultaneously by allowing more than
one transition of the monitor automaton to be triggered at the same time.

Formally, a monitoring automaton M consists of a setM of labeled states, an alphabet Λ of predi-
cates, a transition relation TM ⊆ M× Λ ×M, and a set of initial states ∅ 6= M0 ⊂ M. Each state
of the RG has an associated monitor automaton state set, which is computed during the simulation. M0

is assigned to the initial state q0 of the RG under investigation. Each predicate λ ∈ Λ of M is of the
form λ(x), where x is a state transition (p, (t, i), q) of the RG. Each λ ∈ Λ is associated with one of the
transitions TM ofM.

During the run of the simulation, for each transition (qi, (tj , ik), ql) of the RG, the monitor automaton
state set for the RG state ql is computed as follows:
Let Ai ⊆ M be the monitor automaton’s state set assigned to the current RG state qi. The set TAi of
transitions to be checked is now given by

TAi = {(mm, λo,mn) ∈ TM |mm ∈ Ai}.

All predicates λo have to be checked for the current transitions of the RG (qi, (tj , ik), ql). Based on the
monitored transitionsMT l new monitor automaton states Bl and the changed monitor automaton states
Cl are computed as follows:

MT l := {(mm,mn) ∈M×M | (mm, λo,mn) ∈ TAi ∧ λo((pi, (tj , ik), ql))}
Bl := {mn ∈MT l|(mm,mn) ∈MT l}
Cl := {mm ∈MT l|(mm,mn) ∈MT l}

For new states ql, not already stored in the RG, the state set Al is computed as follows:

Al := Bl ∪ (Ai \ Cl)

If the goal state ql of the transition (pi, (tj , ik), ql) has already been computed by another RG transition
the new state set Al has to be computed as follows:

Al := Ai ∪ Bl

In this case the assignment of monitor automaton states to RG has to be updated starting from successor
states of ql and the associated new states Nl:
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1 Nl := (Bl \ Ai)
2 S := {(mm1 , ql) | mm1 ∈ Nl}
3 while S 6= ∅
4 S := S \ {(mm2 , qi2)}
5 Bl2 := {mn2 ∈ M | (mm2 , λo,mn2) ∈ TAi2

∧ λo2((qi2 , (tj2 , ik2), ql2)}
6 if (Bl2 \ Ai2) 6= ∅
7 Al2 := Ai2 ∪ Bl2

8 S := S ∪ {(mm3 , ql2) | mm3 ∈ (Bl2 \ Ai2)}

Thus, monitor automaton state sets are successively assigned to RG states during simulation. An
example for an monitor automaton is given in Section 5.1 Figure 5.5.

©2011-2013 by MASSIF Consortium 46 / 64



5 Adapting Process Models for Simulation

In this chapter, we exemplify our approach with two different processes from the MASSIF scenarios.

5.1 Example: The Dam Scenario

The Dam example from Deliverable D4.2.1 [32] builds the base for the presented process models. Three
example EPCs will be created:

• Monitoring of authorised staff in the control center (Figure 5.1).

• Monitoring of other staff present in the control center (Figure 5.2).

• Monitoring of gate processing (Figure 5.3).

This example shows the capabilities of the MASSIF framework. The monitoring and prediction part is
divided between Generic Event Translation (GET) framework and PSA.

Things like counting staff members are handled by the GET framework (see [35]). Only the infor-
mation what’s the current role of staff present in the control station will be passed to the PSA. So EPCs
related to the monitoring of the staff in the control center can be simplified to reduce complexity of the
PSA simulation process.

The workflow of the gate control is specified in more detail. The decision of the chosen abstraction
level and what details should be handled by the GET framework depends on the security requirements to
be checked, on the information needs of produced alarms, on the complexity of the prediction process,
and on the events to be simulated in the PSA.

During the specification process the developer has to find an appropriate balance between information
needs for alarms and complexity of the model.

In our example, the EPC that models the gate control could be simplified with the disadvantage that
the current state of the gate control process could not be part of the alarm. Just the information that there
is a problem with the gate control could be delivered in this case. Details like the number of persons
present in the control center would increase the size of the reachability graph produced by the PSA
simulation in an unnecessary way.

Further reduction of complexity could be achieved by omitting the EPCs related to the control station
staff. So there would be no prediction of the staff behaviour but it would be necessary to locate the
monitoring into the GET framework and just to send the current state to PSA.

Listing 5.3 shows the PL implementation of the EPCs according to the presented translation schema.
This example can be compiled in the PSA and the complete reachability graph can be computed is this

case. Since the computed graph is very small (19 nodes and 76 transition), prediction in this example can
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be reduced to finding the current state in this graph after reception of an external event by searching the
EPC event name with the name stored in the PL interpretation variable event. All possible violations
of security requirements defined in the corresponding monitor automaton will immediately be found. In
more complex examples, only a part of the reachability graph will be computed and the graph will be
extended according to the selected number of simulation steps. To avoid complete prediction of events
related to the control center, the corresponding transitions pattern according to the EPC schema should
not be part of the PL file. The GET framework could be configured to send an event, via the Complex
Event Processing (CEP) engine and the SIEM database, with the current state of the control center to the
PSA and by adjusting the PSA configuration this data could be stored into a PL state component. For
instance GET could produce an event:

<control-station operator="active", other-staff="present" />

which could be stored automatically on a state component declared using def state as a PL list:

[control_station [operator active] [other_staff present]]

Every change of this state component would trigger a re-computation of the reachability graph and the
checking of the new transitions by the monitor automaton. So these events are excluded from prediction
but the information stored in the state component can be used in predicates of the monitor automaton for
the recomputed predicted EPC transitions.

No CS Operator

��

check CS supervised

��

CS supervised CS not supervised

Figure 5.1: EPC control station operator

Listing 7.1 in the appendix 7.1 shows the PL code for the implementation of the three presented
EPCs. The complete reachability graph can be computed for this model. The graph can be displayed
using the PSA graph browser (see Figure 5.4). The names of the PL transition pattern causing the
transitions are used by default as labels for the edges in the graph browser. The labels can be changed
by using presentation homomorphisms (cf. [16]). Listing 5.1 shows the initial state M-1 (named q0 in
4.2) in textual form. The predecessor states and successor states (M-n) with the corresponding transition
pattern are also part of this textual representation. The predecessor states are listed at the beginning, the
successor states are listed after M-1, and the values of all state components are listed at the end.
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No Other Staff

��

check CS other staff

��

CS other staff CS no other staff

Figure 5.2: EPC control station other staff

1 M-9 EPC_wait_for_closed M-4 EPC_check_CS_operator_out M-3 EPC_check_CS_other_staff_out
2 M-1
3 EPC_check_CS_operator_in M-4 EPC_check_CS_other_staff_in M-3
4 EPC_wait_for_open M-2
5

6 EPC_check_CS_operator_in_active: <(and,CS_no_operator)>
7 EPC_check_CS_operator_out_active: <(nil,::)>
8 EPC_check_CS_other_staff_in_active: <(and,CS_no_other_staff)>
9 EPC_check_CS_other_staff_out_active: <(nil,::)>

10 EPC_exit: <false>
11 EPC_wait_for_change_active: <(nil,::)>
12 EPC_wait_for_close_active: <(nil,::)>
13 EPC_wait_for_closed_active: <(nil,::)>
14 EPC_wait_for_command_active: <(nil,::)>
15 EPC_wait_for_open_active: <(and,Gate_closed)>

Listing 5.1: Initial state of Dam reachability-graph

The security requirements that certain actions of the Dam workflows have to be supervised will
be controlled by an monitor automaton as introduced in 4.5.1. Figure 5.5 shows a PSA specification
of such an automaton. The initial state of the automaton CS not supervised is marked by the
filled circle. The critical state Action not supervised is marked by the circle with the smaller
filled circle inside. If this state is reached during prediction an alarm will be produced. The predicates
attached to the arcs of the automaton define predicates for transitions of the reachability graph according
to the syntax for edge search predicates defined ins [16]. This automaton is scheduled according to the
algorithm presented in 4.5.1 during the computation of the reachability graph in the prediction process.
The λ predicates in this section correspond to the predicates of the arcs in this automaton.
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Gate closed

��

wait for open

open Gate

��

wait for change

��

Gate open close Gatestop Gate

��

wait for closed

��

open GateGate closed

wait for close

close Gate

wait for command

��

open Gateclose Gate

Figure 5.3: EPC gate control
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Figure 5.4: Reachability graph Dam
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Figure 5.5: Monitor automaton Dam
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5.2 Example: An Olympic Games Scenario

The EPC provided by the scenario provider does not correspond directly to a “business process” but
shows an alternative application of the PSA. The EPC is based on “syslog” events in combination with
the monitoring of control actions of the system behaviour. The PSA can be used to detect deviations
from the specified behaviour and to predict the a possible “escalation” of the control process. The PL
EPC implementation is given in Listing 7.2 in the appendix 7.2 according to the presented schema for
the EPC implementation. It’s possible to compute the complete reachability graph for this model. The
graph can be displayed restricted to the binding of the variable event with the graph browser of the
PSA (cf. Figure 5.6). This graph directly corresponds to the EPC model since no constructs leading to
branches in the RG are used. An alternative implementation for better usage of PSA features relating to
uncertainty is given in [33].

Figure 5.6: Reachability Olympic Games
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6 Conclusion

This deliverable is part of the work package WP4.2. The particular objectives of this work package are,
(1) to specify an executable event-driven process model triggered by real-time events, (2) to develop
methodologies for performing dynamic predictive process analysis at runtime, (3) to provide techniques,
featuring the ability to perform intensive simulation analysis under given hypothesis, and (4) to imple-
ment the provided techniques in an intelligent security event-processing engine.

This deliverable provides the results of the Tasks T4.2.2 “Process Model” and T4.2.3 “Dynamic Sim-
ulation and Analysis Methods”. This comprises a description of a formal security-aware process model;
specification of techniques for the identification of close-future security-threatening process states and
simulation analysis methods, which inspect the behaviour of complex/parallel processes under given hy-
potheses. Therefore, the formalised process model consumes events from the runtime environment and
reflects the current process state. A security analysis model, which is formalised by monitor automata,
identifies current and close-future violations of the security requirements. A mapping model maps tran-
sitions in the security analysis model onto security alerts that are fed via the MASSIF repository service
into the runtime environment. The alerts generated from these models at runtime can be used by other
MASSIF components in order to enable anticipatory impact analysis, decision support and impact mit-
igation by adaptive configuration of countermeasures. Parts of the concept have been presented at the
models@runtime workshop in [11].

Roadmap for future work. The last task of WP4.2 is the task T4.2.4 “Predictive Security Analyser”.
The analyser provided from this task will implement the techniques and methods provided in this de-
liverable. It will be able to perform a dynamic runtime analysis and an intensive simulation analysis
of the project scenarios. Thus it will assist and support the SIEM framework, developed in the MAS-
SIF project, in making important decisions concerning countermeasures and reactions against upcoming
security threats.

An early prototype of the PSA is currently being tested and an interfaces to The Intrusion Detection
Message Exchange Format (IDMEF) has been developed. Parts of the simulation and analysis methods
are already present in the prototype, which has been delivered in D4.1.3. This prototype has been tested
without the MASSIF environment using a mockup implementation of the adapter of the event interface.
An example process description from Olympic Games scenario has been used to create test data.

The final PSA implementation is subject of deliverable D4.2.3 in M27. Visualisation of the current
simulation state together with a graphical EPC representation will be developed and implemented. Import
of PNML models as created by process discovery tools will be implemented.
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[19] G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Prozes̈modellierung auf der Grundlage
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7 Appendix A

7.1 Implementation of Dam Example

1 defset Event_names = { Gate_closed, open_Gate, stop_Gate, close_Gate, Gate_open, Gate_closed,
2 CS_no_operator, CS_operator,
3 CS_no_other_staff, CS_other_staff };
4

5 defset Connectors = { and, or, xor, nil };
6

7 defset Event_seq = seq(Event_names);
8

9 defset EPC_state_set = pro( Connectors : connector, Event_seq : events);
10 defconst EPC_inactive >> EPC_state_set = (nil, ::);
11

12 defcase update_state_fu :pro (EPC_state_set, EPC_state_set, Event_names) >> EPC_state_set
13 update_state_fu (state, init_value,event) =
14 if connector(state) = nil then
15 ( connector(init_value), event),
16 if connector(state) = ’and’ & sfind(event,(events(state))) = 0 then
17 ( connector(state), imset(events(state).event))
18 else_error EPC_inactive();
19

20 def_role EPC
21 {exit : bool := false }
22 { active(state,init_value)
23 (connector(state) = ’xor’ & l(events(state)) > 0) |
24 ( connector(state) = ’and’ & events(state) = events(init_value)) }
25 { activate(state,init_value,event)
26 state := update_state_fu(state,init_value, event) }
27 { activate_if(output_state,init_value,event,test_event)
28 when (event=test_event) {
29 activate(output_state,init_value,event) } }
30 { deactivate(state)
31 state := EPC_inactive() }
32 { exit(event,test_event)
33 when (event = test_event) {
34 exit := true } };
35

36 defconst EPC_check_CS_other_staff_in_input >> EPC_state_set = (and, CS_no_other_staff);
37 defconst EPC_check_CS_other_staff_in_output >> EPC_state_set = (and, CS_other_staff);
38 def_state EPC_check_CS_other_staff_in_active : EPC_state_set
39 := EPC_check_CS_other_staff_in_input();
40 defconst EPC_check_CS_other_staff_out_input >> EPC_state_set = (and, CS_other_staff);
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41 defconst EPC_check_CS_other_staff_out_output >> EPC_state_set = (and, CS_no_other_staff);
42 def_state EPC_check_CS_other_staff_out_active : EPC_state_set := EPC_inactive();
43

44 defconst EPC_check_CS_operator_in_input >> EPC_state_set = (and, CS_no_operator);
45 defconst EPC_check_CS_operator_in_output >> EPC_state_set = (and, CS_operator);
46 def_state EPC_check_CS_operator_in_active : EPC_state_set := EPC_check_CS_operator_in_input();
47 defconst EPC_check_CS_operator_out_input >> EPC_state_set = (and, CS_operator);
48 defconst EPC_check_CS_operator_out_output >> EPC_state_set = (and, CS_no_operator);
49 def_state EPC_check_CS_operator_out_active : EPC_state_set := EPC_inactive();
50

51 defconst EPC_wait_for_open_input >> EPC_state_set = (and, Gate_closed);
52 defconst EPC_wait_for_open_output >> EPC_state_set = (and, open_Gate);
53 def_state EPC_wait_for_open_active : EPC_state_set := EPC_wait_for_open_input();
54

55 defconst EPC_wait_for_change_input >> EPC_state_set = (xor, open_Gate);
56 defconst EPC_wait_for_change_output >> EPC_state_set = (xor, stop_Gate.Gate_open.close_Gate);
57 def_state EPC_wait_for_change_active : EPC_state_set := EPC_inactive();
58

59 defconst EPC_wait_for_close_input >> EPC_state_set = (and, Gate_open);
60 defconst EPC_wait_for_close_output >> EPC_state_set = (and, close_Gate);
61 def_state EPC_wait_for_close_active : EPC_state_set := EPC_inactive();
62

63 defconst EPC_wait_for_command_input >> EPC_state_set = (and, stop_Gate);
64 defconst EPC_wait_for_command_output >> EPC_state_set = (xor, close_Gate.open_Gate);
65 def_state EPC_wait_for_command_active : EPC_state_set := EPC_inactive();
66

67

68 defconst EPC_wait_for_closed_input >> EPC_state_set = (and, close_Gate);
69 defconst EPC_wait_for_closed_output >> EPC_state_set = (xor, Gate_closed.open_Gate);
70 def_state EPC_wait_for_closed_active : EPC_state_set := EPC_inactive();
71

72

73 def_trans_pattern EPC check_CS_other_staff_in
74 (con,event,events)
75 active(EPC_check_CS_other_staff_in_active, EPC_check_CS_other_staff_in_input()),
76 (con,events) ? EPC_check_CS_other_staff_in_output(),
77 event ? events,
78 event = ’CS_other_staff’,
79 deactivate(EPC_check_CS_other_staff_in_active),
80 activate(EPC_check_CS_other_staff_out_active,EPC_check_CS_other_staff_out_input(),
81 ’CS_other_staff’);
82

83 def_trans_pattern EPC check_CS_other_staff_out
84 (con,event,events)
85 active(EPC_check_CS_other_staff_out_active, EPC_check_CS_other_staff_out_input()),
86 (con,events) ? EPC_check_CS_other_staff_out_output(),
87 event ? events,
88 event = ’CS_no_other_staff’,
89 deactivate(EPC_check_CS_other_staff_out_active),
90 activate(EPC_check_CS_other_staff_in_active,EPC_check_CS_other_staff_in_input(),
91 ’CS_no_other_staff’);
92

93 def_trans_pattern EPC check_CS_operator_in
94 (con,event,events)
95 active(EPC_check_CS_operator_in_active, EPC_check_CS_operator_in_input()),
96 (con,events) ? EPC_check_CS_operator_in_output(),
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97 event ? events,
98 event = ’CS_operator’,
99 deactivate(EPC_check_CS_operator_in_active),

100 activate(EPC_check_CS_operator_out_active,EPC_check_CS_operator_out_input(),
101 ’CS_operator’);
102

103 def_trans_pattern EPC check_CS_operator_out
104 (con,event,events)
105 active(EPC_check_CS_operator_out_active, EPC_check_CS_operator_out_input()),
106 (con,events) ? EPC_check_CS_operator_out_output(),
107 event ? events,
108 event = ’CS_no_operator’,
109 deactivate(EPC_check_CS_operator_out_active),
110 activate(EPC_check_CS_operator_in_active,EPC_check_CS_operator_in_input(),
111 ’CS_no_operator’);
112

113 def_trans_pattern EPC wait_for_open
114 (con,event,events)
115 active(EPC_wait_for_open_active, EPC_wait_for_open_input()),
116 (con,events) ? EPC_wait_for_open_output(),
117 event ? events,
118 event = ’open_Gate’,
119 deactivate(EPC_wait_for_open_active),
120 activate(EPC_wait_for_change_active,EPC_wait_for_change_input(),’open_Gate’);
121

122 def_trans_pattern EPC wait_for_change
123 (con,event,events)
124 active(EPC_wait_for_change_active, EPC_wait_for_change_input()),
125 (con,events) ? EPC_wait_for_change_output(),
126 event ? events,
127 deactivate(EPC_wait_for_change_active),
128 activate_if(EPC_wait_for_command_active,EPC_wait_for_command_input(),event,’stop_Gate’),
129 activate_if(EPC_wait_for_close_active,EPC_wait_for_close_input(),event,’Gate_open’),
130 activate_if(EPC_wait_for_closed_active,EPC_wait_for_closed_input(),event,’close_Gate’);
131

132 def_trans_pattern EPC wait_for_command
133 (con,event,events)
134 active(EPC_wait_for_command_active, EPC_wait_for_command_input()),
135 (con,events) ? EPC_wait_for_command_output(),
136 event ? events,
137 deactivate(EPC_wait_for_command_active),
138 activate_if(EPC_wait_for_change_active,EPC_wait_for_change_input(),event,’open_Gate’),
139 activate_if(EPC_wait_for_closed_active,EPC_wait_for_closed_input(),event,’close_Gate’);
140

141

142 def_trans_pattern EPC wait_for_close
143 (con,event,events)
144 active(EPC_wait_for_close_active, EPC_wait_for_close_input()),
145 (con,events) ? EPC_wait_for_close_output(),
146 event ? events,
147 event = ’close_Gate’,
148 deactivate(EPC_wait_for_close_active),
149 activate(EPC_wait_for_closed_active,EPC_wait_for_closed_input(),’close_Gate’);
150

151

152 def_trans_pattern EPC wait_for_closed
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153 (con,event,events)
154 active(EPC_wait_for_closed_active, EPC_wait_for_closed_input()),
155 (con,events) ? EPC_wait_for_closed_output(),
156 event ? events,
157 deactivate(EPC_wait_for_closed_active),
158 activate_if(EPC_wait_for_change_active,EPC_wait_for_change_input(),event,’open_Gate’),
159 activate_if(EPC_wait_for_open_active,EPC_wait_for_open_input(),event,’Gate_closed’),
160 activate_if(EPC_wait_for_command_active,EPC_wait_for_command_input(),event,’stop_Gate’);

Listing 7.1: PL implementation of Dam EPCs

7.2 Implementation of Olympic Games Example

1 defset EPC_event_names = { User_prompted_for_login_details, Login_Data_Delivered,
2 Authenticate_user, Login_with_admin_privileges_Attempted,
3 User_Authenticated, Check_admin_connection_time,
4 Logon_Successful, Admin_at_unusual_time, Admin_behaviour_ok,
5 Admin_at_unusual_location, Admin_behaviour_ok,
6 Event_logged_illegal_user, Session_disconnected };
7

8 defconst EPC_Introduce_user_password_input >> EPC_state_set
9 := (and, User_prompted_for_login_details);

10 defconst EPC_Introduce_user_password_output >> EPC_state_set
11 := (and, Login_Data_Delivered);
12 def_state EPC_Introduce_user_password_active : EPC_state_set
13 := EPC_Introduce_user_password_input();
14 defconst EPC_Authenticate_user_input >> EPC_state_set
15 := (and, Login_Data_Delivered);
16 defconst EPC_Authenticate_user_output >> EPC_state_set
17 := (xor, Login_with_admin_privileges_Attempted.User_Authenticated );
18 def_state EPC_Authenticate_user_active : EPC_state_set
19 := EPC_inactive();
20 defconst EPC_Check_admin_connection_time_input >> EPC_state_set
21 := (and, Login_with_admin_privileges_Attempted);
22 defconst EPC_Check_admin_connection_time_output >> EPC_state_set
23 := (xor, Admin_at_unusual_time.Admin_behaviour_ok);
24 def_state EPC_Check_admin_connection_time_active : EPC_state_set
25 := EPC_inactive();
26 defconst EPC_Create_new_session_input >> EPC_state_set
27 := (and, User_Authenticated);
28 defconst EPC_Create_new_session_output >> EPC_state_set
29 := (and, Logon_Successful);
30 def_state EPC_Create_new_session_active : EPC_state_set
31 := EPC_inactive();
32 defconst EPC_Log_irregular_admin_behaviour_pattern_input >> EPC_state_set :
33 := (xor, Admin_at_unusual_time.Admin_at_unusual_location);
34 defconst EPC_Log_irregular_admin_behaviour_pattern_output >> EPC_state_set
35 := (and, Event_logged_illegal_user);
36 def_state EPC_Log_irregular_admin_behaviour_pattern_active : EPC_state_set
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37 := EPC_inactive();
38 defconst EPC_Check_admin_location_input >> EPC_state_set
39 := (and, Admin_behaviour_ok);
40 defconst EPC_Check_admin_location_output >> EPC_state_set
41 := (xor, Admin_at_unusual_location.Admin_behaviour_ok);
42 def_state EPC_Check_admin_location_active : EPC_state_set
43 := EPC_inactive();
44 defconst EPC_End_admin_login_session_input >> EPC_state_set
45 := (and, Event_logged_illegal_user);
46 defconst EPC_End_admin_login_session_output >> EPC_state_set
47 := (and, Session_disconnected);
48 def_state EPC_End_admin_login_session_active : EPC_state_set
49 := EPC_inactive();
50

51

52 def_trans_pattern EPC introduce_user_password
53 (con,event,events)
54 active(EPC_Introduce_user_password_active, EPC_Introduce_user_password_input()),
55 (con,events) ? EPC_Introduce_user_password_output(),
56 event ? events,
57 event = ’Login_Data_Delivered’,
58 deactivate(EPC_Introduce_user_password_active),
59 activate(EPC_Authenticate_user_active,EPC_Authenticate_user_input(),
60 ’Login_Data_Delivered’);
61

62

63 def_trans_pattern EPC authenticate_user
64 (con,event,events)
65 active(EPC_Authenticate_user_active, EPC_Authenticate_user_input()),
66 (con,events) ? EPC_Authenticate_user_output(),
67 event ? events,
68 activate_if(EPC_Create_new_session_active,EPC_Create_new_session_input(),
69 event,’User_Authenticated’) ,
70 activate_if(EPC_Check_admin_connection_time_active,
71 EPC_Check_admin_connection_time_input(),
72 event,’Login_with_admin_privileges_Attempted’) ,
73 deactivate(EPC_Authenticate_user_active);
74

75

76 def_trans_pattern EPC create_new_session
77 (con,event,events)
78 active(EPC_Create_new_session_active,EPC_Create_new_session_input()),
79 (con,events) ? EPC_Create_new_session_output(),
80 event ? events,
81 event = ’Logon_Successful’,
82 deactivate(EPC_Create_new_session_active);
83

84

85 def_trans_pattern EPC check_admin_connection_time
86 (con,event,events)
87 active(EPC_Check_admin_connection_time_active,EPC_Check_admin_connection_time_input()),
88 (con,events) ? EPC_Check_admin_connection_time_output(),
89 event ? events,
90 activate_if(EPC_Log_irregular_admin_behaviour_pattern_active,
91 EPC_Log_irregular_admin_behaviour_pattern_input(),
92 event,’Admin_at_unusual_time’),
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93 activate_if(EPC_Check_admin_location_active, EPC_Check_admin_location_input(),
94 event,’Admin_behaviour_ok’),
95 deactivate(EPC_Check_admin_connection_time_active);
96

97

98 def_trans_pattern EPC check_admin_location
99 (con,event,events)

100 active(EPC_Check_admin_location_active,EPC_Check_admin_location_input()),
101 (con,events) ? EPC_Check_admin_location_output(),
102 event ? events,
103 activate_if(EPC_Log_irregular_admin_behaviour_pattern_active,
104 EPC_Log_irregular_admin_behaviour_pattern_input(),
105 event,’Admin_at_unusual_location’),
106 exit(event,’Admin_behaviour_ok’),
107 deactivate(EPC_Check_admin_location_active);
108

109

110 def_trans_pattern EPC log_irregular_admin_behaviour_pattern
111 (con,event,events)
112 active(EPC_Log_irregular_admin_behaviour_pattern_active,
113 EPC_Log_irregular_admin_behaviour_pattern_input()),
114 (con,events) ? EPC_Log_irregular_admin_behaviour_pattern_output(),
115 event ? events,
116 event = ’Event_logged_illegal_user’,
117 deactivate(EPC_Log_irregular_admin_behaviour_pattern_active),
118 activate(EPC_End_admin_login_session_active,EPC_End_admin_login_session_input(),event);
119

120 def_trans_pattern EPC end_admin_login_session
121 (con,event,events)
122 active(EPC_End_admin_login_session_active,EPC_End_admin_login_session_input()),
123 (con,events) ? EPC_End_admin_login_session_output(),
124 event ? events,
125 deactivate(EPC_End_admin_login_session_active),
126 exit(event,’Session_disconnected’);

Listing 7.2: PL implementation of Olympic Games EPC
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