
MAnagement of Security information and events
in Service InFrastructures

MASSIF
FP7-257475

D4.2.3 - Predictive Security Analyser

Activity A4 Workpackage WP4.2

Due Date Month 24 Submission Date 2013-01-31

Main Author(s) Jürgen Repp (Fraunhofer), Roland Rieke (Fraunhofer)

Contributor(s) Rodrigo Diaz (Atos), Maria Zhdanova (Fraunhofer)

Version v1.0 Status Final

Dissemination
Level

PP Nature P

Keywords predictive security analysis, analysis of process behavior, security monitoring,
security assessment tools

Reviewers Luigi Coppolino (Epsilon)

Romain Giot (FT)

Part of the Seventh
Framework Programme

Funded by the EC - DG INFSO

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

Version history

Rev Date Author Comments

V0.1 2012-06-04 Roland Rieke (SIT) initial version

V0.9 2013-01-22 Jürgen Repp, Roland Rieke (SIT) review version

V1.0 2013-01-31 Pedro Soria (Atos) final review and official delivery

©2011-2013 by MASSIF Consortium 2 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

Glossary of Acronyms

ACL Allegro Common Lisp

CLIM Common Lisp Interface Manager

EPC Event-driven Process Chain

IDMEF Intrusion Detection Message Exchange Format

MOTIF Graphical user interface specification and widget toolkit for building X Window
applications

NIST National Institute of Standard and Technologies

JDK Java Development Kit

PL Preamble Language

PN Product Net

PNML Petri Net Markup Language

PSA Predictive Security Analyser

SIEM Security Information and Event Management

XML Extensible Markup Language

XSD XML Schema Definition

©2011-2013 by MASSIF Consortium 3 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

Executive Summary

This deliverable describes the implementation of a new generation Predictive Security Analyser (PSA).
The PSA takes as an input: (a) a process model, (b) the security requirements of the process, and (c)
real-time events from the process execution. If a critical state or a process anomaly is detected, the PSA
generates an alert that is disseminated to the MASSIF framework for further processing.

Security analysis for event-driven processes requires a process model that fits to the incoming events.
Specific security properties can be used to restrict the allowed process behaviour further. Unfortunately,
in most practical cases, a model of the control flow of a process, such as a semi-formal workflow specifi-
cation, is not available. So the necessary model has to be constructed from artifacts, e.g., documentations
of parts of the process with varying degree of details, interviews with involved personnel, and probably
an analysis of historic event logs.

In order to assist the persons in charge of tool adaptation with regard to the specification of application
processes, the PSA supports the use of process specifications that have been generated by external tools.
Specifically, it is possible to use a Petri net specification that has been generated by the ProM [15] tool1.

The PSA implements the techniques and methods developed in the previous work within WP4.2
[9, 12, 2], and complements the semi-automatic uncertainty management tool from D4.1.3 [10]. It can
perform a dynamic runtime analysis and an intensive simulation analysis of the project scenarios. Thus,
it will assist and support the advanced SIEM framework – developed in the MASSIF project – in making
important decisions concerning countermeasures and reactions against upcoming security threats.

Besides the use within the MASSIF framework [1, 11, 7], we consider the PSA as a component
that implements a meta-system to be used within an open architecture of a generic security strategy
measurement and management system improving cyber-security in Future Internet [3, 4, 14, 13].

1http://www.promtools.org/prom6/

©2011-2013 by MASSIF Consortium 4 / 28

http://www.promtools.org/prom6/

Contents

1 Introduction 8
1.1 Analysis of Security Requirements . 9
1.2 Glossary adopted in this deliverable . 9
1.3 Structure of the document . 10

2 Prototype in a Nutshell 11
2.1 Purpose, Scope and Functionality . 11
2.2 List of Components and their actual Release Numbers 12
2.3 Prototype Availability . 12
2.4 Build Procedure . 13

3 Prototype Deployment 14
3.1 Pre-requisites . 14
3.2 Installation Procedure . 14
3.3 How to Verify the Installation . 14
3.4 Licensing . 15
3.5 Prototype Usage . 15

4 Architecture Prototype Design 17
4.1 Prototype Context . 17
4.2 Prototype Component Structure . 17
4.3 PSA Data Flow . 18
4.4 Graphical User Interface . 19

4.4.1 Specifying Process Instances . 19
4.5 Running an Example . 21

5 Prototype Implementation 25

6 Conclusions 26
6.1 Self-evaluation and Assessment . 26
6.2 Roadmap . 26

©2011-2013 by MASSIF Consortium 5 / 28

List of Figures

1.1 Prediction of close-future process actions . 8

3.1 Starting PSA . 15

4.1 PSA components . 18
4.2 PSA data flow . 19
4.3 PSA project manager . 21
4.4 XML Schema Definition (XSD) definition mapping . 22
4.5 Simulation options . 22
4.6 Monitor automaton . 23
4.7 Simulation statistics . 23

©2011-2013 by MASSIF Consortium 6 / 28

List of Tables

1.1 Guidelines concerning security addressed by this deliverable 9

©2011-2013 by MASSIF Consortium 7 / 28

1 Introduction

This deliverable is the result of task 4.2.3 as part of work package 4.2. The outcome of this task - the PSA
- is a software tool for dynamic runtime security analysis and intensive simulation analysis of the project
scenarios. The prototype presented here implements advanced techniques for the evaluation of security-
related events and their interpretation with respect to the monitored processes and their required security
properties. These techniques should enable methodologies for performing dynamic process analysis at
runtime, detecting any potential violation of the security properties.

This final prototype of the PSA delivered in D4.2.3 incorporates the solutions from D4.1.3 [10],
namely (1) mapping incoming events to formal representations, and (2) reasoning about security with
uncertain and incomplete knowledge about processes and their relation to these events.

Specific solutions within the prototype D4.2.3 address the issue of prediction of close-future process
actions. The analytical approach taken for the prediction of close-future actions within a process is
sketched in Figure 1.1.

event
stream

e1

e2

e3

process
model

a1

a2

past time future time

Figure 1.1: Prediction of close-future process actions

The blue ellipses in this figure denote the events and the red chamfered rectangles denote process
actions. Process actions are not directly visible in the event stream. Therefore, the process state can only
be reflected in the model by analysis of the events. In the example in Figure 1.1, the process execution
trace and the current state of the process is computed using the measured events e1, e2, and e3. The
dotted arrows denote the synchronisation of the process model with the event stream and the solid lines
denote the transitions within the process model. The process description is formalised in the process
model. Therefore, the process behaviour can be computed starting with the current state of the process.
This behaviour contains possible future actions to be predicted. The dashed arrows denote the predicted
close-future process behaviour. Figure 1.1 shows possible close-future actions a1 and a2.

The novel methods implemented in this prototype have been described in D4.2.2 [12].

©2011-2013 by MASSIF Consortium 8 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

1.1 Analysis of Security Requirements

Besides issues like dependability, redundancy and fault tolerance, analysis of the four scenarios consid-
ered reveals the need for enhanced security-related features of future Security Information and Event
Management (SIEM) platforms (cf. D.2.1.1 [8]). These features go beyond what is currently supported
by existing solutions. Overall a lack of capability to model incidents at an abstract level is perceived.
From the scenarios investigated, and the current SIEM limitations observed, the guidelines in Table 1.1
have been identified to be relevant for the work within this deliverable.

Guideline Description

G.S.4. Predictive security
monitoring

Predictive security monitoring allows to counter negative future ac-
tions, proactively. There is a crucial demand for early warning capa-
bilities. Moreover, the limitations with regards to the Managed En-
terprise Service point to the fact that dealing with unknown or unpre-
dictable behaviour patterns is not sufficient in current SIEM solutions
(cf. [8]).

G.S.5. Modelling of the
events and their relation
to other, possibly external,
knowledge

A basic precondition of prediction and simulation as well as of attack
analysis is the proper representation of the security requirements and
any relevant information about the system as well as any knowledge
about the actual and possible behaviour. When reasoning under in-
complete information it is not only decisive to properly gather and
describe the information valid, but it is also required to develop novel
methods based on discernibility, probability or plausibility in order to
reason about uncertainty.

Table 1.1: Guidelines concerning security addressed by this deliverable

In terms of trustworthiness considerations, we assume that data we use for analysis are already
processed and provided by trustworthy MASSIF components.

In terms of legal considerations, we assume that data we use for analysis are already processed and
provided in a form compliant with the legal requirements stated in [8]. With respect to the specific
guideline G.L.5 “Least Persistence Principle. Only data strictly needed for security guarantee must be
kept, while unnecessary details must be deleted or made anonymous.”, we provide technical means,
which can be applied to fulfill the related Requirement 5.1 “Mechanisms must be provided to filter data
containing information not relevant to security processing” that is given in Annex B.1.5 of [8]. For this
purpose, the tool provides a menu to define a schema mapping where all data containing information not
relevant to security processing can be filtered out (cf. Figure 4.4).

1.2 Glossary adopted in this deliverable

As agreed by the MASSIF Consortium, the main reference of security glossary is provided by the
National Institute of Standard and Technologies (NIST) [5].

©2011-2013 by MASSIF Consortium 9 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

1.3 Structure of the document

The remainder of this deliverable is organised as follows.
Some general information about the delivered prototype is summarised in Chapter 2. Technical and

legal preconditions for using the tool are described in Chapter 3. The technological and implementation
details and basic usage of the tool are described in Chapter 4. Chapter 5 provides some conclusive
remarks and plans for future releases.

©2011-2013 by MASSIF Consortium 10 / 28

2 Prototype in a Nutshell

2.1 Purpose, Scope and Functionality

This deliverable is part of work package WP4.2. The particular objectives of this work package are:

• to specify an executable event-driven process model triggered by real-time events,

• to develop methodologies for performing dynamic predictive process analysis at runtime,

• to provide techniques, featuring the ability to perform intensive simulation analysis under given
hypothesis, and

• to implement the provided techniques in an intelligent security event-processing engine.

This deliverable describes a prototype resulting from the Tasks T4.2.4 “ Predictive Security Anal-
yser”. The purpose of this prototype is to provide an advanced tool for the evaluation of security-related
events and their interpretation with respect to:

1. the known control-flow of the processes involved, and

2. the required security properties.

With respect to (1), the PSA analyses deviations from the given process specification. These deviations
can be the result of: (a) an evolution in the process specification, (b) problems with the measurement
(e.g., lost events) or (c) anomalies caused by attacker interactions. Specific reactions to (1) have been
described in [10].

With respect to (2), the PSA specifically enables dynamic predictive process analysis at runtime and
detection of potential violations of the specified security properties. This is described in Section 4.5.

In summary, the PSA comprises:

event pre-processing

• tool support for import of events from an XML stream,

• tool support for import of events from the MASSIF database,

• tool support for event abstraction in order to filter data containing information not relevant to
security processing,

• tool support to map events to the corresponding process instance,

process specification and adaptation

©2011-2013 by MASSIF Consortium 11 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

• tool support for the specification of a formal security-aware process model,

• tool support for the import of process specifications from process discovery tools,

• tool support for uncertainty management (e.g., semi-automatic adaptation of process specifi-
cations to measured behaviour),

close-future process behaviour

• implementation of techniques for the computation of close-future process behaviour for
Event-driven Process Chain (EPC) specifications,

• implementation of techniques for the computation of close-future process behaviour for
Product Net (PN) specifications and imported Petri Net Markup Language (PNML) speci-
fications,

security requirements specification and evaluation

• tool support for the specification of the required security properties that the corresponding
process should fulfil (in form of monitor automata),

• implementation of techniques for an on-the-fly check of security requirements with respect
to current process behaviour,

• implementation of techniques for an on-the-fly check of security requirements with respect
to close-future process behaviour,

situational awareness and alarm generation

• visualisation of current process states with respect to security requirements in the security
monitors,

• implementation of alarm generation on detection of critical states.

2.2 List of Components and their actual Release Numbers

Main components:

• MASSIF PSA Event Adapter, v1.0

• PSA prototype, v3.0

2.3 Prototype Availability

The prototype is distributed as a gzipped tar archive which contains the PSA lisp runtime image, shared
libraries used by the lisp system, shell scripts for starting PSA, and one jar file with the event adapter.

©2011-2013 by MASSIF Consortium 12 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

2.4 Build Procedure

To build PSA a license of the Lisp development environment Allegro Common Lisp (ACL) 9.0 for Linux
is needed. PSA includes lisp compiler functionality but generation of runtime images is not possible
without a valid license. Within the MASSIF project a runtime image for 64bit Linux systems will be
available.

©2011-2013 by MASSIF Consortium 13 / 28

3 Prototype Deployment

3.1 Pre-requisites

Java 6 and the Graphical user interface specification and widget toolkit for building X Window applications
(MOTIF) must be installed. A free version is part of most distributions or is available from www.openmotif.org.
The MOTIF library libXm.so.3 must exist in standard library path or libXm.so.3 has to be in a path spec-
ified by $LD LIBRARY PATH. If libXm.so.4 is installed a link from libXm.so.3 to libXm.so.4 must
exist. For motif installation on RedHat Linux see:
http://www.franz.com/support/documentation/9.0/doc/faq/

Firefox or Mozilla has to be installed for online help, because the tool uses the Mozilla remote
control feature. The default browser is Firefox and can be changed in the shvt>options>misc menu. To
achieve improved graph visualization graphviz 1 can be used to determine positions for graph drawing
shvt>options>Graph Visualization.

3.2 Installation Procedure

To get the current version of the PSA please contact Jürgen Repp (juergen.repp@sit.fraunhofer.de).
Installation of PSA from tar archive:

cd [install-dir]
tar -zxvf psa-[version].tar.gz

3.3 How to Verify the Installation

Start PSA:

[install-dir]/psa/spsa

The PSA start window shown in Figure 3.1 will be displayed. The PSA tool selection menu on the right
side in this Figure can be opened by clicking on PSA in the start window.

1http://www.graphviz.org/

©2011-2013 by MASSIF Consortium 14 / 28

http://www.franz.com/support/documentation/9.0/doc/faq/
http://www.graphviz.org/

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

Figure 3.1: Starting PSA

3.4 Licensing

There are two PSA versions available:

• Standard runtime (without Lisp compiler)

• Dynamic runtime (with Lisp compiler - speed up factor of approx. 6 compared with the standard
runtime version)

To use the dynamic runtime a valid dynamic runtime license is needed. During the MASSIF evaluation
of PSA such licenses can be used restricted to the time of the PSA evaluation.
The code of PSA is proprietary and owned by Fraunhofer SIT. Access rights to the MASSIF consortium
are provided for using it during the project execution.

3.5 Prototype Usage

PSA can be started by using the command spsa in the installation directory. The event adapter is started
by executing:

java -jar Adapter.jar -plugA:XMLTag [event file] \\
1000 1 -plugB:SHVT localhost 9999

Currently only the file interface is implemented for the event adapter. The interface to the MASSIF
system will be implemented for the final version of PSA (D4.2.3). The usage of the prototype is described
in detail in Section 4.5. Note that the event adapter can only be started after the PSA server process was

©2011-2013 by MASSIF Consortium 15 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

started. During the processing of the event stream the PSA model will be adapted. The changed Preamble
Language (PL) source files will be loaded into memory. The user must explicitly save the buffers, if the
changes shall be used in future simulations (Command File>Save in project manager).

©2011-2013 by MASSIF Consortium 16 / 28

4 Architecture Prototype Design

4.1 Prototype Context

As a part of the MASSIF SIEM, the PSA monitors workflow execution. Based on the monitoring re-
sults, PSA creates a model of the current system state and predicts future states of the system and checks
possible violations of security requirements in this simulation. Details of the process modelling and mon-
itoring are described in deliverables [12] and [10]. D4.2.2 [12] describes the transformation of process
models to PSA models, while D4.1.3 [10] describes the handling of incomplete specifications. In the cur-
rent version, treatment of processes running independently was improved. A process instance represents
one specific instance of a process that is currently executing. Process instances share a common possible
control flow given by the process specification but they contain specific runtime information related to
that instance. The standard way of computing possible continuations would compute all possible inter-
leavings of process instances and thus result in exponential state space explosion of the behaviour graph.
To avoid this problem the approach taken in PSA is to run simulation on an abstraction level which is
identical to all processes instances. So we can reuse the graph of predicted possible behaviour for every
instance and thus reduce complexity significantly. However, to be able to identify the process instance
at the user interface we have to create and maintain relations from the process instances in the system to
the graph of predicted behaviour.

4.2 Prototype Component Structure

PSA components shown in Figure 4.1 are extended by the following features:

• Semi automatic adaptation of process models to workflows of the “real” system during runtime
(Process Modeller and PSA Core).

• Handling of events that are not described correctly by the Event Type Interface (20 in Figure 4.1).

• Estimation of current system states in the case of incomplete monitoring data (PSA Core).

• Generation of alarms (independent of the monitoring process described in [12]) if problems can’t
be solved (PSA Core, Security Alarm Interface).

• User controlled change of the current state of simulation (Process Modeller and PSA Core).

• Process identification together with process oriented security monitoring.

©2011-2013 by MASSIF Consortium 17 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

Ev
en

t P
ro

ce
ss

in
g

Repository

G
en

er
ic

 E
ve

nt
s D

is
se

m
in

at
io

n

Visualisation/GUI

PSA Modeller
Components

Security
Event

Modeller

Process
Modeller

Predictive Security Analyzer

PSA Core

Event
Type

Interface: 20

Security/
Process
Model

Interface

Event
Interface: 10

Security
Alarm

Interface

Visualization
Interface

Security
M

odel
Process
M

odel

MASSIF Event
Schema (XSD)

Configuration

PSA Alerts

MASSIF Events

D
ecision Support &

 Reaction Events /
Alerts

PSA Alerts

d
PSA Model

Interface: 30
Specification
Interface: 50

PSA Model (Security/Process /Event Model)

Attack Model
Interface: 40

Attack
Model

Requirement/Process Specification

M
AS

SI
F

Ev
en

ts

(C
or

re
la

te
d)

Simulation /
Analysis Results

Figure 4.1: PSA components

4.3 PSA Data Flow

Figure 4.2 depicts PSA data flows during the model development and the simulation process. The dashed
arrows denote data flows during runtime, while the solid arrows denote data flows during the development
process. The quality of the monitoring, of the simulation, and of the prediction process relies on the
precision of the operational process model. Normally detailed modelling of the behaviour of several
similar processes in one PSA model causes a state space explosion. The presented approach tries to
decrease this problem by generalizing the process model and elimination of process specific information
in the mapping defined for the event stream. The information required to identify a process will be
included in the Mapping Model and Process Identification Model to compile the functions for runtime
mapping and process identification which will be applied to events received from the event stream. If
such a generalization is not possible, the already presented approach for modelling without process
identification still can be used.

©2011-2013 by MASSIF Consortium 18 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

Process Discovery

Process Model
Security Re-
quirementsEvent TypeEvent Stream

Mapping Model
and Process

Identification Model

Runtime Mapping
and Process
Identification

Operational
Process Model

PSA

Alarm

Monitor Automaton

Figure 4.2: PSA data flow

4.4 Graphical User Interface

The graphical user interface for defining abstractions of the system events to derive corresponding PL
definitions was described in [12]. The example XSD file used in section 4.4 in this deliverable is extended
to enable handling of several process instances by one shared reachability graph. Thus several users can
be monitored in parallel.

4.4.1 Specifying Process Instances

To identify a certain process instance a process id must be extracted from a received event. Listing 4.1
shows the XSD definition, which describes the format of the example events. EventType is the
Extensible Markup Language (XML) type used for a single event. The attribute id is defined for this
type to enable identification of a certain process. This new attribute can be mapped to PL values using
the mechanisms described in section 4.3.1 of [12]. In our example we can use the integer value without
any mapping. The value of the attribute id will not be added to the PL data assigned to an interpre-
tation variable or state component for the continuation of the simulation. This value will be used only
to identify the current state in the computed system behaviour (reachability graph) for the continuation
of the prediction from this state. To take advantage of this new feature an appropriate abstraction level
which omits all specific data of process instances, which causes the described state space explosion has
to found. The corresponding elements and attributes of the received events should not be mapped do PL
data used in the simulation.

To take advantage of this new feature an appropriate abstraction level for other values used in the

©2011-2013 by MASSIF Consortium 19 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

simulation has to be found. E.g. it makes no sense to use this feature if other values directly correspond
to the defined process id. If more than one XML element is used as a process id, they will be combined
to a list in the order of their occurrence in the XML event. Listing 4.2 shows a part of a possible event
stream for this XSD definition with two process instances.

Listing 4.1: XSD schema for example events
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://namespaces.atos.com/AtosEvent" elementFormDefault="qualified">

<xsd:simpleType name="CheckLogin">
<xsd:restriction base="xsd:token">
<xsd:enumeration value="User_prompted_for_login_details" />
<xsd:enumeration value="Login_Data_Delivered" />
<xsd:enumeration value="Authenticate_user" />
<xsd:enumeration value="Login_with_admin_privileges_Attempted" />
<xsd:enumeration value="User_Authenticated" />
<xsd:enumeration value="Check_admin_connection_time" />
<xsd:enumeration value="Logon_Successful" />
<xsd:enumeration value="Admin_at_unusual_time" />
<xsd:enumeration value="Admin_behaviour_ok" />
<xsd:enumeration value="Admin_at_unusual_location" />
<xsd:enumeration value="Admin_behaviour_ok" />
<xsd:enumeration value="Event_logged_illegal_user" />
<xsd:enumeration value="Session_disconnected" />
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="EventType">
<xsd:sequence>
<xsd:element name="Eventname" type="CheckLogin" />

</xsd:sequence>
<xsd:attribute name="id"

type="xsd:integer" />
</xsd:complexType>

<xsd:element name="Event" type="EventType" />
</xsd:schema>

Listing 4.2: Example events
<Event id="1"><Eventname>User_prompted_for_login_details</Eventname></Event>
<Event id="1"><Eventname>Login_Data_Delivered</Eventname></Event>
<Event id="2"><Eventname>User_prompted_for_login_details</Eventname></Event>
<Event id="1"><Eventname>Login_with_admin_privileges_Attempted</Eventname></Event>
<Event id="1"><Eventname>Admin_at_unusual_time</Eventname></Event>
<Event id="2"><Eventname>Login_with_admin_privileges_Attempted</Eventname></Event>

The next section will describe step by step how to handle the corresponding process definition in PSA.
The PL implementation presented in [12] section 7.2 will be used for this purpose, since this model has
been already introduced and can handle the events described by the changed XSD definition. The corre-

©2011-2013 by MASSIF Consortium 20 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

sponding project file will be available in the demo directory (Unusual Behaviour/Unusual Behaviour.prj).

4.5 Running an Example

Start the PSA by using the command spsa in the installation directory.

• Start project manager

To load an existing project (a set of files comprising process specifications, event mappings, ...), the
Project Manager in the PSA main menu has to be started. The Project Manager window contains
two parts, one for the directory tree, once an existing project is loaded, and one that shows which
action is being executed, and successful execution and error messages, respectively. When starting
the Project Manager both window parts are empty.

• Read the project file Unusual Behaviour.prj from the sub directory Unusual Behaviour
of the demo directory. You will see the project manager window shown in Figure 4.3. The pre-
sented XSD file is already included in this project and assigned to a preamble file. Also the
mapping from XML data to PL data is defined.

Figure 4.3: PSA project manager

• To check the mapping execute the command Define Schema Mapping in context menu of
CheckLoginEventID.pre. The schema mapping shown in Figure 4.4 will be displayed. The
red icon with the text id and the text “Use Number as an ID” indicates that the attribute id will
be used as a process id. This option can be activated or deactivated by using the commands Use as
an ID or Do not use as an ID in the context menu of an XML element.

• Preparing PSA Simulation

©2011-2013 by MASSIF Consortium 21 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

Figure 4.4: XSD definition mapping

The simulation window can be opened by executing the command Analysis in the context menu of
the root node. The preferences have to be adjusted as shown in Figure 4.5 (Menu bar command Op-
tions > Simulation). The type has to be set to MASSIF Event Bus Simulation and ExternalEvents
must be set to Yes. The default values for the interpretation variable and the state component for
storing external events in the PSA model can be defined. The default values will fit to the presented
example model.

Figure 4.5: Simulation options

• Monitor Automaton

For demonstration purposes, the simple monitor automaton shown in Figure 4.6 has been added
to the project. The automaton is compiled automatically after executing the analysis command in
the project manager and can be edited and compiled from the monitor automaton editor (Com-
mand Edit > Monitor Automaton). This automaton performs a state change only when the event
Admin at unusual location does occur.

• Now PSA simulation can be started by entering the command PSA Simulation at the prompt of the
command pane of the simulation window. To initiate the sending of events the user should start the

©2011-2013 by MASSIF Consortium 22 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

Figure 4.6: Monitor automaton

Event Interface at the command line after changing the working directory to the PSA installation
directory.

java -jar Adapter.jar \\
-plugA:XMLTag demo/Unusual_Behavior/login_events_with_id.xml \\
1000 1 -plugB:SHVT localhost 9999

The adapter will send test events from the file login events with id.xml (see Listing 4.2).

• After the adapter is started the user can check the state of the simulation by executing the Statistics
command in the command pane on the right side of the simulation window. Statistical information
concerning the computation of the reachability graph and to the state of the Monitor automaton
will be displayed as shown in Figure 4.7.

Figure 4.7: Simulation statistics

©2011-2013 by MASSIF Consortium 23 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

PSA provides capabilities to investigate the current state of the simulation by several commands
available in the context menus of displayed object in the analysis window and in the monitor
automaton editor. In contrast to running simulation without process identification the user will be
asked to select an appropriate process id, if process related information (e.g. monitor automaton
states) assigned to entities of the reachability graph will be selected. The statistics shows that
the monitor automaton state Problem was predicted. This transition will produce an alarm in
Intrusion Detection Message Exchange Format (IDMEF) format sent to the Event Interface (see
4.3). The id of the process responsible for the alarm is included as additional data in the alarm,
despite the fact that this id does not occur in any state or interpretation variable binding of the
system behaviour (reachability graph).

Listing 4.3: IDMEF alarm
<IDMEF-Message>

<Analyzer analyzerid="0" name="PSA" manufacturer="http://www.sit.fraunhofer.de"
model="PSA" version="3.0.877"
class="Concentrator" ostype="Linux" osversion="3.0.0-29-generic">
<Node category="unknown"><name>pc-repp2.sit.fraunhofer.de</name></Node>
<Process><name>psa</name><pid>29415</pid><path>/local/acl90/clim</path></Process>

</Analyzer>
<CreateTime ntpstamp="0xd4a8daff.0x00000000">2013-01-22T10:31:43+01:00</CreateTime>
<Classification text="Critical State Predicted"/>
<AdditionalData type="xsd:string" meaning="State">Problem</AdditionalData>
<AdditionalData type="xsd:string" meaning="ProcessID">2</AdditionalData>

</IDMEF-Message>

©2011-2013 by MASSIF Consortium 24 / 28

5 Prototype Implementation

The main part of the prototype is implemented in Common Lisp using the dynamic object-oriented
development system ACL 9.0. A lisp compiler is included in the runtime version of the prototype and so
the recompilation of changed PSA models during runtime is supported. The graphical user interface of
the prototype is implemented in Common Lisp Interface Manager (CLIM) which is currently based on
MOTIF.

The event interface to the MASSIF system (see Figure 4.1) is implemented in Java to alleviate the
integration process. The adapter requires Java 6 and runs with Sun Java Development Kit (JDK) and also
open JDK.

A socket interface is used for communication between the adapter module and the PSA core. Thus
the distribution of the components to different hosts is possible.

©2011-2013 by MASSIF Consortium 25 / 28

6 Conclusions

6.1 Self-evaluation and Assessment

The prototype has been tested without the MASSIF environment using a mockup implementation of the
adapter of the Event Interface. An example process description from Olympic Games scenario has been
used to create test data. The example was extended by process identification features presented in this
deliverable.

PNML import was tested with several examples created by process discovery tools.

6.2 Roadmap

Access to the repository storage layer [6] via the repository service layer will be implemented (cf. task
5.3.4 “MASSIF integration”).

In cooperation with MASSIF partners PSA process models have to be developed. Based on these
models, runtime monitoring and prediction has to be tested. Improvements to the user interface will be
developed according to user needs that will be identified during the tool adaptation in work package 2.2.

©2011-2013 by MASSIF Consortium 26 / 28

Bibliography

[1] Luigi Coppolino, Michael Jäger, Nicolai Kuntze, and Roland Rieke. A Trusted Information Agent
for Security Information and Event Management. In ICONS 2012, The Seventh International Con-
ference on Systems, February 29 - March 5, 2012 - Saint Gilles, Reunion Island, pages 6–12.
IARIA, 2012.

[2] Jörn Eichler and Roland Rieke. Model-based Situational Security Analysis. In Workshop on Mod-
els@run.time, volume 794, pages 25–36. CEUR, 2011.

[3] Andrew Hutchison and Roland Rieke. Management of Security Information and Events in Future
Internet. In 2011 Workshop on Cyber Security and Global Affairs, Budapest. 2011.

[4] Andrew Hutchison and Roland Rieke. Measuring Progress in Cyber-Security: An Open Architec-
ture for Security Measurement Consolidation. In 2012 Workshop on Cyber Security and Global
Affairs and Global Security Forum, Barcelona. 2012.

[5] Richard Kissel. Glossary of key information security terms. NIST Interagency Reports NIST IR
7298 Revision 1, National Institute of Standards and Technology, February 2011.

[6] Igor Kotenko, Evgenia Novikova, Olga Polubelova, and Valerio Formicola. D5.3.4 – Unified repos-
itory and visualization tools. FP7-257475 MASSIF European project, January 2013.

[7] Elsa Prieto, Rodrigo Diaz, Luigi Romano, Roland Rieke, and Mohammed Achemlal. Massif: A
promising solution to enhance olympic games it security. In Christos K. Georgiadis, Hamid Ja-
hankhani, Elias Pimenidis, Rabih Bashroush, Ameer Al-Nemrat, Ozgur Akan, Paolo Bellavista,
Jiannong Cao, Falko Dressler, Domenico Ferrari, Mario Gerla, Hisashi Kobayashi, Sergio Palazzo,
Sartaj Sahni, Xuemin (Sherman) Shen, Mircea Stan, Jia Xiaohua, Albert Zomaya, and Geoffrey
Coulson, editors, Global Security, Safety and Sustainability & e-Democracy, volume 99 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engi-
neering, pages 139–147. Springer Berlin Heidelberg, 2012.

[8] MASSIF project consortium. D2.1.1 - Scenario requirements. FP7-257475 MASSIF European
project, March 2011.

[9] Jürgen Repp and Roland Rieke. D4.2.1 – Formal Specification of Security Properties. FP7-257475
MASSIF European project, September 2011.

[10] Jürgen Repp, Maria Zhdanova, and Roland Rieke. D4.1.3 – Methods and tools for reasoning about
security with uncertain knowledge. FP7-257475 MASSIF European project, September 2012.

©2011-2013 by MASSIF Consortium 27 / 28

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

MASSIF - FP7-257475

D4.2.3 - Predictive Security Analyser

[11] Roland Rieke, Luigi Coppolino, Andrew Hutchison, Elsa Prieto, and Chrystel Gaber. Security
and reliability requirements for advanced security event management. In Igor Kotenko and Victor
Skormin, editors, Computer Network Security, volume 7531 of Lecture Notes in Computer Science,
pages 171–180. Springer Berlin Heidelberg, 2012.

[12] Roland Rieke, Jürgen Repp, and Maria Zhdanova. D4.2.2 – Process Model and Dynamic Simulation
and Analysis Modelling Framework. FP7-257475 MASSIF European project, September 2012.

[13] Roland Rieke, Julian Schütte, and Andrew Hutchison. Architecting a security strategy measurement
and management system. In Proceedings of the Workshop on Model-Driven Security, MDsec ’12,
pages 2:1–2:6, New York, NY, USA, 2012. ACM.

[14] Julian Schütte, Roland Rieke, and Timo Winkelvos. Model-based security event management. In
Igor Kotenko and Victor Skormin, editors, Computer Network Security, volume 7531 of Lecture
Notes in Computer Science, pages 181–190. Springer Berlin Heidelberg, 2012.

[15] W. M. P. van der Aalst, B. F. van Dongen, C. Günther, A. Rozinat, H. M. W. Verbeek, and A. J.
M. M. Weijters. Prom: The process mining toolkit. In BPM 2009 Demonstration Track, volume
489, pages 1–4. CEUR, 2009.

©2011-2013 by MASSIF Consortium 28 / 28

	Introduction
	Analysis of Security Requirements
	Glossary adopted in this deliverable
	Structure of the document

	Prototype in a Nutshell
	Purpose, Scope and Functionality
	List of Components and their actual Release Numbers
	Prototype Availability
	Build Procedure

	Prototype Deployment
	Pre-requisites
	Installation Procedure
	How to Verify the Installation
	Licensing
	Prototype Usage

	Architecture Prototype Design
	Prototype Context
	Prototype Component Structure
	PSA Data Flow
	Graphical User Interface
	Specifying Process Instances

	Running an Example

	Prototype Implementation
	Conclusions
	Self-evaluation and Assessment
	Roadmap

