
Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

1

Tool based formal Modelling, Analysis and Visualisation of
Enterprise Network Vulnerabilities utilising Attack Graph
Exploration

Roland Rieke
Fraunhofer Institute for Secure Telecooperation, Germany

About the author
Born in 1957 in Braunschweig, Roland Rieke studied computer science from
1976 to 1982 at TUD (Darmstadt University of Technology) and has worked as a
researcher for SIT (the Fraunhofer Institute Secure Telecooperation, former
GMD) in Darmstadt since 1982. He is married and has 3 children. Projects he
worked on comprise the design and implementation of components for
distributed office systems and network protocols. Since 1996 his research
interests are focused on the development of methods and tools for formal
security models and application of these techniques. Recently he has worked on
the proof of security characteristics of cryptographic protocols, the java virtual
machine verifier, context oriented security policies and e-government
applications.

Mailing Address: Fraunhofer Institut Sichere Telekooperation, Rheinstrasse 75,
D-64295 Darmstadt, Germany; Phone: +49 6151869284; Fax: +49 6151869224;
Email: rieke@sit.fraunhofer.de

Descriptors
critical infrastructure protection, attack simulation, verification tool, security
properties, survivability analysis, cost-benefit analysis, intrusion detection,
countermeasure evaluation, critical services, risk assessment

Reference to, or Citation of this paper should be made as follows:
Rieke, R. (2004). Tool based formal Modelling, Analysis and Visualisation of
Enterprise Network Vulnerabilities utilising Attack Graph Exploration. In U.E.
Gattiker (Ed.), EICAR 2004 Conference CD-rom: Best Paper Proceedings (ISBN:
87-987271-6-8) 31 pages. Copenhagen: EICAR e.V.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

2

Tool based formal Modelling, Analysis and Visualisation of
Enterprise Network Vulnerabilities utilising Attack Graph
Exploration

Abstract
A core concern of critical infrastructure protection is a careful analysis of what
parts of the information infrastructure really need protection and what are the
concrete threads as well as an evaluation of appropriate protection measures.
In this paper a methodology and a tool for the development and analysis of
operational formal models is presented that addresses these issues in the
context of network vulnerability analysis.

A graph of all possible attack paths is automatically computed from the model of
a government or enterprise network, of vulnerabilities, exploits and an attacker
strategy.

Based on this graph, security properties are specified and verified, abstractions
of the graph are computed to visualise and analyse compacted information
focussed on interesting aspects of the behaviour and cost-benefit analysis is
performed.

Survivability comes into play, when systems’ countermeasures and the behaviour
of vital services it provides are also modelled and effects are analysed.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

3

Introduction
Today’s public, government and enterprise networks are facing an accumulation
of risks because a multitude of more or less critical vulnerabilities to system
security are found every month. At the same time, the published malicious
incidents increase in scope and severity. On the other hand, technological
advancements in antivirus software, firewalls and intrusion detection systems
provide a broad palette of proactive defence measures for network protection
and impact reduction. The increasing complexity of the network structures and
possible protection strategies on one hand and the attack possibilities on the
other hand require tool based methods, to guide a systematic evaluation and
assist the persons in charge with finally determining exactly what really needs
protection and which strategy and means to apply.

A typical means by which an attacker tries to break into a network is, to use
combinations of basic exploits to get more information or more credentials and to
capture more hosts step by step. To find out if there is a combination that
enables an attacker to reach critical network resources or block essential
services it is required, to analyse all possible sequences of basic exploits so
called attack paths. It is also important, to find out which protection could block
successful attack paths most efficiently or at least detect attack attempts in an
early phase.

For this type of vulnerability analysis, an operational formal model is presented
that represents the information system and the behaviour of an attacker. In more
detail, it comprises a model of the enterprise network structure and configuration
including intrusion detection components, a model of vulnerabilities and
corresponding basic exploits, a model of attacker capabilities and profile, and
optionally a model of the system’s countermeasures.

Based on that model, a reachability graph representing the complete system
behaviour is automatically computed. Because this graph in the presented
application scenario represents all possible attack paths, it is called attack graph
in the following text. Now security properties can be specified and verified on the
computed behaviour of the model.

The applied verification method is based on formal methods and is implemented
in the SH verification tool (Ochsenschläger et al., 1999, 2000a) that has been
adapted and extended to support the presented attack graph analysis methods.
Questions relating to security properties that can be answered by analysing the
attack graph include the following:

 What security goals can be broken by a combination of a set of basic
exploits selected as attacker profile ?

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

4

 Find the biggest sources of trouble in the system based on vulnerability-
priorities network-structure and possible attack- patterns. Is there a critical
host or vulnerability on all paths to some attacker goal ?

 Quick check of “am I affected” by a newly found vulnerability and what
new attackcombinations/patterns are possible when adding this
vulnerability ?

 What are the effects of changes to the network configuration on overall
vulnerability ?

If the model additionally includes specifications of intrusion detection com-
ponents, then their behaviour and required coaction to recognise attacks, even
when evidence is scattered over several hosts, can be analysed.

Common questions concerning intrusion detection are:

 What attacks are detected ?

 What are the effects of changes to intrusion detection systems on overall
detection of attacks ?

Abstractions of the attack graph can be computed to visualise and analyse
compacted information focussed on interesting aspects of the behaviour. The
mappings used to compute the abstracted behaviour have to be property pre-
serving, to assure that properties are transported as desired from a lower to a
higher level of abstraction and no critical behaviour is hidden by the mapping.

Aspects that can be visualised using appropriate abstractions on the attack graph
are for example:

 How does the attack graph look like when only attacks that give the
attacker new root access are shown (focussing on gain of credentials) ?

Cost-benefit analysis can be performed based on costs assigned to the atomic
exploits representing level of effort for the attacker and benefits regarding relative
importance of the captured hosts. Typical questions concerning cost-benefit are:

 What is the attack with the least costs breaking a given security property ?

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

5

 How much impact can an attacker produce given that he applies a given
set of atomic exploits ?

 What is the optimal position of given intrusion detection systems regarding
cost benefit balance ?

Liveness (in this context often called survivability) comes into play, if part of the
behaviour of the enterprise network is also modelled. Analysing effects of
countermeasures the system performs under attack or the behaviour of vital
services it provides is possible. Careful modelling on an adequate abstraction
level is required here to avoid typical state space explosion problems. A typical
liveness questions is:

 Is a client still able to get answers from a DBserver when the enterprise
network is under attack ?

Some remarks on the remainder of this paper:
The first step in critical infrastructure protection is, to identify the organisation’s
critical infrastructures and to determine the threats against those infrastructures.
This process is described in the next section particularly with regard to network
vulnerability analysis. For this purpose, the components to be specified for
modelling an attack scenario are described in detail.

The next step in critical infrastructure protection is, to analyse the vulnerabilities
of the threatened infrastructure, to assess the risks of degradation or loss of a
critical resources as well as to evaluate the effects of the application of
countermeasures where risk is unacceptable. To support that process in the
given context, in the subsequent section a methodology for the analysis of an
attack graph is presented that helps to reveal complex attack combinations and
supports the systematic evaluation of possible solutions to minimise risk with
given resources.

In the last section an example scenario is presented and the dynamic behaviour
of different variants is analysed. Finally some related work is commented,
conclusions from this work are drawn and further research goals are sketched.

Modelling an attack scenario
In this section the information model used and the formal analysis and ver-
ification methods and the tool are described, the required specifications are
explained in detail and the computation of the attack graph is outlined. Figure 1
shows an overview of the components used to specify the model of the
enterprise network system under attack.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

6

Figure 1. Components of the model.

Information model
To model the enterprise network, the vulnerabilities and the intrusion detection
systems, a data model loosely resembling the M2D2 information model (Morin et
al., 2002) is used. M2D2 is a formally defined model for information related to the
characteristics of the monitored information system, information about the
vulnerabilities, information about the security tools used for the monitoring, and
information about the events observed. Appropriate parts of this model are
adopted and supplemented by concepts needed for description of exploits,
attacker knowledge and strategy and information for cost benefit analysis.

Modelling hosts and network topology
The set of all hosts of the information system consists of the union of the hosts of
the enterprise network and the hosts of the attacker(s).

A somewhat abstracted view is used for the representation of network topology
including firewalls in the information model. A relation stating what port on what
host is reachable from one another is used as network model. The model is very
flexible, so that this implicit representation may be changed to a more explicit
representation of firewalls easily if this turns out to be useful.

Modelling products, vulnerabilities and host configurations
Following the M2D2 model products are the primary entities that are vulnerable.
A host configuration is a subset of products that is installed on that host and
affects is a relation between vulnerabilities and sets of products that are affected

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

7

by a vulnerability. A host is vulnerable if its configuration is a superset of a
vulnerable set of products. Additionally to the installed products a host
configuration contains information about what services are currently running and
on what ports they are listening.

The vulnerabilities are represented in form of specifications representing a
(sub)set of common vulnerabilities and exposures CVE/CAN that MITRE (see
http://cve.mitre.org/) provides to support standardisation of names for all publicly
known vulnerabilities and security exposures. These specifications additionally
include preconditions about the target host as well as network preconditions and
describe effects that the vulnerabilities have on the attacker and possibly on the
network and target host.

Representative hosts
When analysing a complex enterprise network one usually faces a state space
explosion problem because all possible combinations of exploits on all possible
hosts have to be explored. Therefore it is advantageous to subsume all groups of
hosts that have the same configuration, run the same products and are
reachable with the same restrictions and that exhibit the same behaviour to one
representative host for each such group. In the following text the term host will be
used as a synonym referring to this representative host. What is suggested here,
is to have an abstraction layer between the real enterprise network and the
network of representative hosts that still contains all relevant attacks but reduces
equivalent combinations. This abstraction could also be applied later after
analysing the complete behaviour of the system by using an appropriate mapping
but analysis takes much longer then because all sequences of possible
combinations have to be computed.

Summarising representative hosts
An extension of the above sketched strategy (if the network is still too big for
analysis) is to summarise hosts that are reachable with the same restrictions and
add up their vulnerabilities to create a representative host with merged
vulnerabilities of all summarised hosts. In this case some attacks may be found
that are not possible in the real network and the decision if this approximation of
system behaviour is good enough for analysis is up to the modeller. A strategy
could be, to start with only one representative host per operating system that is
configured to have installed all vulnerable products that the enterprise uses (for
that operating system) and after that analysis go to a finer granularity as long as
the computed state space is still manageable.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

8

Automated generation of formal specifications ?
Note that it would be desirable to have an automated generation of formal
specifications of system configuration directly derived from the output that net-
work scanner tools like Nessus (see http://www.nessus.org/) provide.

Furthermore vulnerability specifications could be derived from vulnerability
database information that for instance ICAT (see http://icat.nist.gov/) provides.
First step would be to find a good structure and means for a formal description of
vulnerabilities that can be used to collect a database of all known vulnerabilities.
An agreed upon formal (and tool readable) description of
intruder/host/service/networkpreconditions and effects of exploitation would have
to be developed. An international project like the CAMDIER proposal (Gattiker et
al., 2003) might tackle such a task.

Operational specification of the behaviour
The modelling of the behaviour of the given information model is based on
asynchronous product automata (APA), a flexible operational specification con-
cept for cooperating systems (Gürgens et al., 2002b). An APA consists of a
family of so called elementary automata communicating by common components
of their state (shared memory). APA are formally defined in figure 2.

Figure 2. APA definition.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

9

APA state components representing the information model
The information model described above is specified for the proposed analysis
method using the following APA state components:

 a specification of the enterprise network topology and host configurations

reachability of ports on all hosts

• trust relations between hosts
• knowledge available at each host that might be valuable for an attacker as

for example ipnumbers of other reachable hosts
• services running on each host
• installed products on each host

 a specification of vulnerabilities of products

 leads to a specification of vulnerabilities for each host when
combined with products installed on each host specified above.

 a specification of attacker knowledge and strategy

 a specification of installed intrusion detection components

 cost benefit ratings, when evaluation about relative values is intended

These specifications are represented in the data structures and initial con-
figuration of the state components in the APA model (see figures 3 and 4).

Modelling attacker and system behaviour
APA state transitions are used to represent atomic exploits and optionally actions
the enterprise network system can take to defend itself or to implement vital
services (see figures 3 and 4).

Figure 3. Representation of the information model using APA.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

10

State transition pattern notation for APA
For the definition of the state transition relation of an elementary automaton ℮ Є
Ε, one has to specify all states of components С Є (℮) (state components
belonging to ℮) where ℮ is active, i.e. can perform a state transition, and the
changes of the states caused by the state transition. APA transition pattern
notation is formally defined in (Gürgens et al., 2002a).

A specification of a state transition pattern consists of the name of the transition
pattern, a role identifier, some predicates for the conditions to be checked and
some expressions to describe the changes in the neighbour state components.

A state transition can occur when all expressions are evaluable and all conditions
are satisfied. All possible variants of bindings of variables to elements of the state
components are generated automatically, so if for example a component
contains different hosts and a variable is used to represent a chosen source host
and another variable is used for an arbitrary target host of an exploit then all
possible combinations of source and target host are computed and further
evaluated.

APA state transition patterns specify attacker and system behaviour
This paper is primarily concerned with using state transition patterns to model
attacker behaviour but as a possible extension other types of state transition
patterns are also considered that can be used to model the behaviour of en-
terprise network components. To reflect the different purposes of the state
transitions three different types are distinguished here. They are characterised by
the role that is associated with the transition type. An instance of a transition
furthermore has a name to identify it; this can be for example the name of the
exploit it specifies.

 specifications of atomic exploits based on the given vul-
nerabilities model the actions an attacker can take in arbitrary order; note that
more than one attacker can act in that role

 specify a model for system defence strategy, tools and
components (optional)

 a model of critical services the system provides (optional)

For a state transition pattern modelling an exploit, a template
structure was developed, so that additional exploits can easily be added following
that layout. This template can serve as a basis to develop an automatic
mechanism that generates such patterns from a knowledge base containing
specifications of the known exploits.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

11

In contrast to the generic nature of , the state transition

patterns and are individual for the
modelled enterprise network, therefore no specific structure is assumed here.
They reflect the state changes triggered by the respective operations.

Structure of state transition patterns for atomic exploits
Figure 4 shows a graphical representation of the template for

including the neighbourhood relation (depicted by the edges)

to the state components (depicted by the circles) listed in the
information model above.

Figure 4. Transition pattern template for exploit modelling.

According to this template, a state transition pattern modelling an exploit is
constructed from the role identifier, here Attacker the name of the transition
pattern which is identical to the name of the exploit and a body that comprises
the following expressions:

 a check that the attacker knows this exploit;
this is determined by an initial configuration that can be given directly or
computed from a given set of exploits

 a selection of source and target hosts for the exploit

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

12

• the source host is chosen from the host set the attacker already has
adequate access to (in some cases the target also needs access to the
source host for example to read a Trojan web page)

• the target host is chosen so that if the exploit succeeds the attacker will
win some credentials or additional knowledge

 induces monotone growing attacker knowledge (no cycles in attack
graph), therefore reduces complexity (see also (Ammann et al., 2002))

 a check if the target host is vulnerable as stated in the specification of the

vulnerabilities needed by this exploit (possibly multiple different exploits
can be based on the same vulnerability)

 the transfer of knowledge from target host to attacker; it has to be decided
how to cope with changing knowledge of the captured host; is knowledge
transferred once the host is captured or is a link from attacker to host
knowledge inserted, so that the attacker always gets the updated contents
? Is attacker knowledge ever invalidated or is knowledge only valid for a
time interval ? These questions influence the attack graph and may lead to
cycles.

 an intrusion detection check for that exploit
 an assignment of cost benefit ratings to this exploit

 an expression to implement the additional impact on the network and host;
for example, to shut down or manipulate a host based intrusion detection
system

The vulnerabilities checked in step above are represented in form of
specifications representing the CVE/CAN vulnerabilities. These specifications
include preconditions about the target host as well as network preconditions and
describe effects that the vulnerabilities have on the attacker and possibly on the
network and target host. A vulnerability is described by expressions with the
following structure:

 a check if the target host is configured vulnerable
• the target host has installed a product or products that are vulnerable with

respect to the given vulnerability
• if necessary other preconditions are checked; for example, it could be

essential for a vulnerability that a trust relation is established (as for
example used in remote shell hosts allow/deny concepts)

 a check if the target host is currently running the respective products (for

example a vulnerable operating system or server version); if a user interaction is
required this includes a check if the vulnerable product is currently used (for
example a vulnerable internet explorer)

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

13

 a check for necessary network preconditions, including a check if the target
host is reachable on the port the vulnerable product is using from the host the
attacker selected as source

 this implicitly includes firewall rules (the model could be extended to explicitly
model firewalls through extra transitions but this would blow up the state space
significantly)

 an expression to cover the effects for the attacker ; for example, to obtain
additional user or root credentials on the target host

 an expression to implement the direct impact on the network and host;
for example, to shut down a service caused by buffer overflow

Attacker knowledge and behaviour
Attacker capabilities are modelled by the knowledge of exploits and hosts and
the credentials on the known hosts that constitute the attackers profile. Knowl-
edge of hosts changes during the computation of the attack graph because the
attacker might gain new knowledge when capturing hosts. For example, if the
attacker captures a portal or a host used as a firewall or a gateway he gets all
information this host has. On the other hand, some knowledge may become
outdated because the enterprise system changes ipnumbers or other con-
figuration of hosts and reachability. Several different attackers can easily be
included because an attacker is modelled as a role not a single instance and the
tool can automatically generate multiple instances from one role definition.
Optionally it is possible to specify extra transitions modelling an assumed impact
an attacker might produce as for example shut down intrusion detection systems,
send wrong or misleading information, shut down other services, denial of
service attacks or other actions. But all this blows up the computation space and
should be carefully used.

Monotonicity and invalid knowledge
It is not clear what is the best strategy to cope with dynamically changing con-
figuration of hosts. To try keep the attacker knowledge monotone growing and
get an attack graph without loops it is useful to model the knowledge as appli-
cable only for some time interval but then if for example a host could change its
ip-address arbitrarily the attack graph always grows with each change.

Assembling components of the model
The applied specification method based on asynchronous product automata
(APA) is supported by the SH verification tool developed at the Fraunhofer
Institute for Secure Telecooperation” (Ochsenschläger et al., 1999, 2000a). This
tool provides components for the complete cycle from formal specification to
exhaustive validation. The tool has been adapted and extended for the presented
field of application.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

14

The project management of the SH verification tool allows to select alternative
parts of the specification and automatically “glues” together selected parts of the
specified components (see figure 1) to generate a combined model of
enterprise network specification, vulnerability and exploit specification and at-

tacker specification. This can be used to answer , and (see
introduction). A very flexible selection of variants of analysis scenarios is imple-
mented. The components are listed in a project tree and can be (de)activated by
mouseclick. So it is easy for example to exchange libraries of specified
vulnerabilities and exploits to analyse different versions and combinations of
formal models and even compare different computed attack graphs or abstrac-
tions thereof in the analysis component of the tool.

Computation of attack graphs
After an initial configuration is selected, the attack graph (reachability graph) is
automatically computed by the SH verification tool according to the definition in
figure 2.

Two extra transitions that have turned out to be very useful have been included
in the model as preprocessing steps. One computes the vulnerabilities per host
from the information on products installed per host and vulnerabilities per
product, the other generates a set of known exploits for the attacker(s) from a
given algorithm. If for example it is assumed that the attacker knows 3 different
exploits, then all combinations of 3 exploits from the set of all specified exploits
have to be computed and further analysed.

To stop computation automatically when specified conditions are reached (or
invariants are broken), so called break conditions can be specified using regular
expressions. A violation of a security property for example, can in many cases be
specified as a break condition.

For a quick check if something went wrong with the definition of the model, some
statistic information is collected during computation of the graph. It can be used
to find out, what state transitions appeared how often and what different values
have been assigned to the state components during the computation.

Analysis of an attack graph
The main purpose of attack graph analysis is, to provide support for the persons
in charge to assess the risks and the effects of possible countermeasures for the
threatened network infrastructure.
The methodology for the analysis of an attack graph presented here that is
outlined in figure 5 supports that process. It assists in revealing complex attack
combinations and supports the systematic evaluation of possible solutions to
minimise risk with given resources.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

15

Figure 5. Computation and analysis of attack graphs.

In the following paragraphs it is shown how to find answers to the questions
posed in the introduction through analyses that can be accomplished after an
attack graph is successfully computed. Many other interesting evaluations can be
performed without question.

Finding violations of security properties
Security is not a singular property of a system. Depending on precisely what
capabilities an attacker has, different properties for the system model have to be
proven.

Formal specification of properties
System properties that are explicitly given by breakconditions can be checked
during computation of the attack graph. Alternatively, security properties given in
form of search queries, B ¨uchiautomata or temporal logic formulae can be
verified after the graph is computed.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

16

Finding states violating a safety (security) property
If a security property can be specified by a regular expression so that it is
possible to check for a violation by inspecting a single node or edge then the
property can be proven by a simple “search query” on the reachability graph.
Often this can be supported in the model by collecting necessary information
during the computation of the graph.

Model checking
If it is required to inspect some or all paths of the graph to check for the violation
of a security property, as it is usually the case for liveness properties, then the
temporal logic component of the SH verification tool can be used. Temporal logic
formulae can also be checked on the abstract behaviour (under a simple
homomorphism). A method for checking approximate satisfaction of properties
fits exactly to the built-in simple homomorphism check (Ochsenschläger et al.,
1999).
These methods provide appropriate support to answer question from the
introduction and are also helpful to research into many other questions.

Abstraction and visualisation of attack graphs
Abstraction capabilities of the SH verification tool support the definition of map-
pings, summarising or omitting transitions in the attack graph. The result is a
view focused on some interesting aspect of the behaviour of the system.
Technically this is implemented as a computation of the minimal automaton for
an abstraction of the reachability graph that is specified via alphabetic language
homomorphisms (Ochsenschläger et al., 2000b).

It is possible for example, to map multiple exploits with the same effects onto the
same subsuming activity like “get-root-access”. This can be used to answer

questions like from the introduction. Another example is, to omit all exploits
that are not detected by some intrusion detection component, in order to get a
graph showing only the traces that an attack correlation component would see.
Abstractions can also be defined using predicates. It is possible for example, to
omit all transitions below a certain costbenefit ratio using an appropriate
predicate.

Analysing IDS pattern detection
The transition patterns representing atomic exploits are modelled to include the
behaviour of intrusion detection components, therefore their behaviour and their
coaction to recognise attack pattern can be analysed. This helps to answer the

question (What attacks are detected ?) from the introduction.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

17

Detections that are directly related to an atomic exploit are visible in the attack
graph, because an intrusion detection check is included in each transition
modelling an atomic exploit.

In more complex cases, evidence of attacks against the network is scattered over
several atomic exploits on one host or several different hosts. The installed
intrusion detection systems therefore have to collect and correlate information
from different sources (Krügel and Toth, 2002).

Analysing the attack graph with regard to the required security properties leads to
a detection of the paths that violate those properties. Abstraction helps to filter
out the information concerning intrusion detection and gives a graph that
visualises the correlation that is required to detect these violations. Now a
scheme of coaction of intrusion detection components to detect this malicious
behaviour or a superordinated component that checks for combined patterns can
be designed.

Question (What are the effects of changes to intrusion detection systems
on overall detection of attacks ?) can be answered by comparing intrusion
detection analysis of different attack graphs computed for different configurations
selected in the project management component. It is useful to combine several
features supported by the SH verification tool to answer this question. To filter
out the intrusion detection information, abstractions of the different attack graphs
are required. Based on this abstracted behaviour, a comparison of the behaviour
of different versions is possible. The tool supports a comparison of those graphs
and additionally the results of search queries and model checking helps finding
the effects in question, but this task requires careful modelling, abstraction and
finding the right properties to check.

Simulation
If the attacker has too many alternatives or the network is too complex, the state
space of the composition of the selected specifications and their complex
interplay may become too big to compute the complete behaviour. In this case it
is appropriate to inspect selected parts of the state space. Simulation of
interesting attack combinations is possible by interactive selection of paths in the
visual representation of the part of the attack graph already computed and
automatic proceeding in the selected direction. Other variants of simulation are
also supported by the tool (for instance random driven). The seamless transition
between verification and simulation on the same model is a particular strength of
the approach presented here.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

18

Cost benefit analysis
Cost benefit analysis as described in this paragraph is meant as a means to help
assess the likely behaviour of an attacker. Cost ratings (from the view of an
attacker) can be assigned to each exploit, for example to denote the time it takes
for the attacker to execute the exploit or the resources needed to develop an
exploit. If not only technical vulnerabilities are modelled but also human
weaknesses are considered, then cost could mean for example the money
needed to buy a password.

Based on these cost assignments, the shortest (least expensive) path from

be computed and visualised. This helps to answer question (What is the
attack with the least costs breaking a given security property ?) from the
introduction.

A benefit for the attacker based on the negative impact he achieves can also be
assigned, for example to indicate the worth regarding relative importance of the
captured host.

Summarised costs and benefits can be compared for selected paths or the whole
graph. For example searching for the node with the greatest benefit for the

attacker answers question from the introduction.

Comparing some configurations with available intrusion detection systems placed
at different locations and computing attack graphs only for undetected attacks
can help to decide what is a better position for the intrusion detection systems
when looking at the maximum benefit for the attacker being undetected in the
different scenarios (see also from the introduction). To find a good
covergage of intrusion detection given restricted resources, only relative
evaluation of some predefined variants is intended here. It is shown in (Jha et al.,
2002) that to decide which minimal set of security measures would guarantee the
safety of the system is polynomially equivalent to the minimum hitting set
problem (NPcomplete).

Survivability analysis
So far it was assumed that the enterprise network system does not react during
an attack. This is in general a useful assumption to keep the graph of the system
behaviour manageable. However the following extensions to the model can give
valuable insight into related problems.

Game: System against attacker
In some cases it is interesting to consider some counterplay of the system. In
Germany for example an ipaddress for a dslconnection is allocated dynamically

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

19

and automatically changed every 24 hours. If for example the hosts of some
teleworkers are part of the modelled enterprise system it is useful to check what
effect this behaviour has on the attack analysis. Also if an attack is time
consuming, it is possible, that it will be detected not only by an intrusion detection
system but also possibly by some other security scanner tool or a human
administrator checking the given configuration at certain time intervals. It is
desirable to augment the model by some counteraction to describe for example a
cut of a network connection in critical cases or the reconfiguration of a system.

Mission critical eservices
It is often very important, that even when an enterprise network system is under
attack, at least some mission critical eservices survive that attack. Therefore it is
essential, that it is possible to augment the attack scenario to include actions of
the critical eservice and to analyse the extended scenario.

To verify if a given eservice survives an attack, a formal model of its components
and their interplay must be added to the system model. The combined model can
then be analysed by computing its dynamic behaviour and examining the
generated state space. New safety and usually also liveness properties that
constitute the required behaviour of the eservice have to be specified and
verified. This helps in answering for example question from the intro-
duction. A methodology for developing an e-service so that it is robust against
attacks has been described in (Rieke, 2003).

Because of the well known state space explosion problem, the extended sce-
narios have to be specified on a high abstraction level in order be able to com-
pute the complete reachability graph. To find an appropriate abstraction level, it
is essential to incorporate the hints given in the previous section concerning
representative hosts. One should also consider to summarise similar attacks onto
a representative abstract attack. For example only use the abstract attacks “get-
user-access”, “get-root-access” and “from-user-to-root-access”.

Specification and analysis of an example scenario
To illustrate the methods described so far, a small example scenario is given
now. The components are specified, the respective attack graph is described and
some typical analysis outcome is sketched.

Scenario specification
Figure 6 shows the example scenario with the enterprise hosts named ms_host,
nix_host, portal, db_server located inside the enterprise network and the host
telework connected from the internet as well as the attacker. Vulnerabilities of the

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

20

hosts needed for specification part derived from the products installed and
the product vulnerabilities are denoted below the host-names.

The installed intrusion detection components for specification part are
depicted in figure 6 by the rhombic nodes. IDS_type1 is a network based system
that detects exploits named CAN_2003_0693_ssh_exploit and rsh_login attempts.
One IDS of that type is installed between the internet and the host portal, the
other is installed to control the traffic between the portal and the host db_server.
Furthermore a host based intrusion detection component IDS_type2 that detects
exploits of type CAN_2002_0649_sql_exploit is installed directly on host
db_server.

Figure 6. Example scenario

More information for specification part is provided by the tables in figure 7,
showing the reachability of ports on all hosts and the active services. Some
abbreviations are used here, namely zone_internet is an abbreviation for the
hosts telework, attacker, portal and zone_intern is used for portal, nix_host,
db_server and ms_host. The abbreviation port_all means reachability for all ports
and finally the abbreviation net means physically connected.

Knowledge to be captured is only available on the portal that knows the
addresses of all hosts. This could be used for example by the attacker to find out

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

21

the dynamic allocated address of the telework host, that might be not so well
administrated as the enterprise hosts directly connected to the network.

Host Service Port User
telework netbios ssnd netbios ssn port root
nix host ftpd ftp port root
nix host sshd ssh port root
nix host rshd rsh port root
db server ftpd ftp port root
db server rshd rsh port root
db server sql res ms sql m port db user

ms host dcom root
ms host netbios ssnd netbios ssn port root
portal sendmaild smtp port root
portal sshd ssh port root

Figure 7. Host reachability and installed services.

Attacker profile
It is assumed that the attacker knows all exploits that are specified in detail be
low, namely CAN_2002_0649_sql_exploit, CAN_2003_0620_man_db_exploit,
CAN_2003_0693_ssh_exploit, CAN_2003_0693_ssh_exploit_stealth,
CAN_2003_0694_sendmail_exploit, CAN_2003_0715_dcom_exploit,
CVE_1999_0035_ftp_exploit and the pseudo exploit rsh_login.

In the initial configuration the attacker has root credentials on the host attacker
and no other access. The attacker nows the static addresses of all hosts except
the dynamic address of the host telework. The attacker has no other knowledge.

This completes the specification part .

Vulnerabilities and exploits
The vulnerabilities and exploits described below are used in the example sce-
nario. They are not described in detail here; more details are found at MITRE
(see http://cve.mitre.org/) and ICAT (see http://icat.nist.gov/) sites.

Vulnerability CVE_1999_0035, an error in ftpd allowing to read/write arbitrary files
is used to manipulate files to establish remote shell trust and this in turn used in
combination with the rsh_login which is not a real vulnerability but a weak
configuration to get remote access. This old vulnerability has been included
because this example was used in some of the papers cited in the section on
related work, to make it easier to compare different approaches. The related
exploit using this vulnerability is named CVE_1999_0035_ftp_exploit.

The vulnerabilities CAN_2003_0620 (a buffer overflows in mandb) and the
related exploit CAN_2003_0620_man_db_exploit, CAN_2003_0693 (a buffer

Source Host Target Host Port
zone internet zone internet port all
zone all portal ssh port
zone all portal smtp port
portal zone intern port all
zone intern zone all net
zone intern zone intern ftp port
zone intern zone intern rsh port
zone intern zone intern ssh port
db server ms host rpc port

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

22

management error in OpenSSH) and the related exploits
CAN_2003_0693_ssh_exploit and CAN_2003_0693_ssh_exploit_stealth,
CAN_2003_0715 (a heap-based buffer overflow in DCOM) and the related
exploit CAN_2003_0715_dcom_exploit, CAN_2003_0694 (a buffer overflow in
sendmail) and the related exploit CAN_2003_0694_sendmail_exploit as well as
CAN_2002_0649 (buffer overflows in SQL server) and the related exploit
CAN_2002_0649_sql_exploit are used to directly get access rights on a remote
host. An example of the implementation of an exploit in SH verification tool
syntax is given in figure 8.

Figure 8. Transition pattern for CAN_2003_0693_ssh_exploit.

Analysis of the scenario

Attack graph of the example scenario
The computed attack graph for this scenario has 142 nodes and 544 edges.
Figure 9 shows a small section of it. The oval nodes depict single states, the
rectangular nodes depict states with a hidden subgraph that can be expanded by
mouseclick. The red (dotted) nodes mark states where the attacker has been
detected by an intrusion detection component.

Check security properties
As an example for a security property to be checked for the scenario it is
assumed that it is essential that an attacker can not gain any access at the
db_server. The search query

({Attacker_plvl_state:<y>| sfind((’db_server’,’db_user’),y) =0},,
 {Attacker_plvl_state:<x>| sfind((’db_server’,’db_user’),x) >0});

checks if there are transitions in the graph where the attacker gains access as
db_user at the db_server. For this query 66 matching edges are found.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

23

Figure 9. Attack graph of example scenario (small section).

Maximal impact
The computed attack graph for the example scenario has 18 so called dead
markings. In cases where the graph has no loops these are the leafs of the
graph. They denote states where no further processing occurs because the
attacker has no more applicable atomic exploits available or has already cap-
tured all hosts.

Selecting an arbitrary dead marking and let the tool generate a way to the root
node produces a path as shown in figure 10. The edge labels denote the atomic
exploit chosen in that step as well as the target and source host. The first 2
edges represent state transitions for preprocessing steps as explained in the
section on computation of attack graphs. The red (dotted) nodes M85, M122,
M140 denote states where the attacker has already been detected. There is
much more information available for each transition but this is hidden here by a
presentation abstraction to keep the example readable. The numbers after the $-
sign are explained in the next paragraph.

Inspecting the attackers knowledge at the dead marking M140 shows that he
gained root access on hosts attacker, ms_host, nix_host and portal and
furthermore he gained db_user access on db_server but none on telework.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

24

Figure 10. Path to root with cost benefit notations.

Cost benefit evaluation
For cost benefit evaluations an adequate measure has to be defined. In the
example scenario it is assumed, that costs reflect the effort an attacker uses in
each step of the attack. Costs are directly assigned to the atomic exploits in this
example, whereas the benefit for a transition is computed as the worth of the
target host multiplied by the rank of the access right gained. The benefit for the
attacker reflects the negative impact for the enterprise. Of course other kinds of
measures for cost and benefit or other appropriate measures could be
implemented following the proposed scheme. Assumed costs and benefits per
exploit for specification part of the example scenario are assigned as
shown in the tables in figure 11.

Figure 11. Cost benefit values.

Exploit Cost
CAN_2003_0693_ssh_exploit 3
CAN_2003_0693_ssh_exploit_stealth 4
CVE_1999_0035_ftp_exploit 2
CAN_2003_0620_man_db_exploit 3
CAN_2003_0715_dcom_exploit 4
CAN_2003_0694_sendmail_exploit 4
CAN_2002_0649_sql_exploit 4
rsh_login 1

Host Worth
telework 1
attacker 0
nix_host 2
ms_host 2
db_server 9
portal 4

Access Rank
none 1
restricted_user 2
user 3
db_user 4
root 5

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

25

Now by shortest path computation in a postprocessing step on the attack graph,
the values for cost and benefit can be summed up along the paths with the least
cost to any node. The cost and benefit of a transition is depicted by the numbers
after the $sign at the edges in figure 10 that shows an example path in the attack
graph with annotated cost benefit annotations. The sums along the path are
depicted inside the nodes in the same figure.

A search for the node with the highest benefit score for the attacker (where most
negative impact is achieved) returns the node M135 which has the same benefit
rating namely 93 as the node M140 in figure 10.

Cut down the graph
Defining a condition that stops further computation after an attack has been
detected by an intrusion detection component generates only a subgraph with 57
nodes (33 dead) and 95 edges. The graph reduced to only undetected attacks
generates a subgraph with only 24 nodes (4 dead) and 60 edges.

Cost benefit analysis for the graph with undetected attacks shows that the
maximum benefit an attacker can obtain undetected in this scenario is 48.
Inspecting the respective node in the attack graph shows that the attacker has
gained root access on hosts attacker, ms_host, nix_host and portal but no access
on db_server and telework.

Abstraction
In some applications the SH verification tool already computed graphs of about 1
million edges in acceptable time and space. But it is impossible to visualise a
graph of that size. So abstraction focussing on some interesting aspect is
definitely a comfortable way to go in this case. An example for the usage of
behaviour abstraction is shown in figure 12. The abstract view in this case shows
that only one type of exploit can be used to attack the db_server and the graph is
reduced from 544 edges to only one edge in the abstracted behaviour. The
predicate used to define the corresponding mapping hides (maps to epsilon) all
transitions that don’t have the target host db_server.

Figure 12. Attack graph abstraction showing transitions with target db_server.

Figure13 shows an abstraction focussing on transitions with benefit > 10 and the
resulting graph is also very concise.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

26

Figure 13. Attack graph abstraction showing transitions with benefit >10.

System countermeasures and critical services
As an example for a check for critical services availability and to demonstrate
how system countermeasures can be added to the framework defined so far, it is
assumed that the host db_server always tries to answer queries from host
teleworker. As a precondition the server checks if sshd is running on the portal
because a “ssh-tunnel” on that host is used to reach teleworker. Now as shown in
figure 8 (in condition) the attacker kills the sshd when executing the
CAN_2003_0693_ssh_exploit. So if the attacker applies this exploit to attack the
host portal, then afterwards the sshd is not active on that host and so db_server
cannot send an answer to telework anymore. Now additionally a system
countermeasure is considered that restarts the sshd on the portal from time to

time. Two transitions patterns, namely and
add these actions to the model. The defence operation

restarts sshd when it is down and the service action checks for an active sshd on
portal. No other details are added to keep the model small.

Now a new computation of the attack graph results in a graph with 234 nodes (0
dead !) and 1136 edges. A section of this graph is shown in figure 14.

Figure 14. Section of attack graph with service and countermeasure.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

27

A typical liveness question for the sketched situation is from the
introduction (Is a client still able to get answers from a DB-server when the
enterprise network is under attack ?). Using an appropriate type of model
checking, approximate satisfaction of temporal logic formulae can be checked by
the SH verification tool (Ochsenschläger et al., 1999, 2000a). In terms of
temporal logic the property above can be written as G F Service_Answer (always
eventually Service_Answer) which is found to be true by the tool.

Lifting the assertion that the attacker only attacks a host if he gains some
credentials for the CAN_2003_0693_ssh_exploit (see figure 8 the check for “no

root access” on target host in) leads to an attack graph with 3062 nodes (0
dead) and 22228 edges. This illustrates the dramatic influence of monotonicity
assumptions on attack graph growth.

Related work
The approach that Phillips and Swiler first presented in (Phillips and Swiler,
1998) is closest to the approach proposed in this paper. They described a
prototype tool implementing their method in (Swiler et al., 2001). Similar to the
computation method based on the SH verification tool outlined here, their method
computes an attack graph starting from an initial node, but they don’t describe
abstraction methods to visualise compact presentations of the graph and they
don’t address liveness analysis that is used here to assure system response to
critical services under attack.

Jha, Sheyner, Wing et al. use scenario graphs in (Jha and Wing, 2001) and
attack graphs (Jha et al., 2002; Sheyner et al., 2002) that are computed and
analysed based on model checking.

Ammann et al. presented an approach in (Ammann et al., 2002) that is focussed
on reductions of complexity of the analysis problem from exponential to
polynomial by explicit assumptions of monotonicity.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

28

Conclusions
Within the critical infrastructure protection context this paper aims at the pro-
tection of the core information infrastructure although the methods presented
here could be extended and applied to other types of infrastructure and threats.
The presented methodology for computation and analysis of attack graphs out-
lined in figure 5 is based on a formal specification of an organisation’s critical
network infrastructure, supplemented by a generic vulnerability and exploit
specification and an attacker specification to model the threats against that
infrastructure. The tool supported analysis of the attack graph assists in revealing
vulnerabilities of the threatened infrastructure including complex attack
combinations and supports the systematic evaluation of possible solutions to
minimise risk with given resources. Contributions of this work are:

Specification framework for critical network infrastructures and
threats
It is worked out in detail, how to formally specify topology and components of the
information infrastructure and represent it by state components in asynchronous
product automata (APA) notation. The operational formal system specification is
completed by specifications of vulnerabilities, exploits and attacker capabilities
represented by APA state transitions (see figures 1, 3 and 4). Specific templates
to support and simplify formal modelling of enterprise networks under attack have
been developed. Moreover, extensions to the model to add system defence
operations and critical services actions are proposed, supplemented by some
abstraction concepts, to prevent state space explosion problems in such models.

Methodology and tool to analyse vulnerabilities and countermeasures
From the APA specification an attack graph representing the behaviour of the
model is automatically computed. Based on this graph, tool supported analysis
methods are presented that can be used to answer the various questions posed
in the introduction. Specific features of this approach comprise:

• an integrated interactive visualisation support to browse or debug the
behaviour of the model and explore selected parts of the graph

• the usage of a well-elaborated and formally proven abstraction concept
combined with an appropriate model checking component for analysis of
security and liveness properties

• an integrated costbenefit analysis method
• a seamless transition between verification and simulation on the same

model when a complete computation of the attack graph is not possible
• a flexible configuration management simplifies evaluation and comparison

of different solutions

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

29

Further research objectives
To seamlessly integrate the methods and tool presented here into a network
vulnerability analysis framework, a toolassisted transformation of a system
configuration as provided by administration databases or gathered by network
scanners into formal specifications is required. Likewise, some improvement
towards generic formal vulnerability and exploit specifications is needed.

An in-depth research objective is, to develop methods and tool support to reduce
state space explosion by further elaborating the ideas on abstraction of the
system specification as sketched in the paragraphs about “representative hosts”.
For such a tool assisted specification abstraction, it has to be (automatically)
proven, that the system specification is appropriately transformed into the
abstracted specification, to assure that system properties are transported from a
lower to a higher level of abstraction and no critical behaviour is hidden.

Another interesting perspective is, to extend the specification and analysis
method described in this paper for application in other similar structured sce-
narios, as for example, to model a networked infrastructure system of a country
including specifications of mutual dependencies as described in (Luiijf et al.,
2003).Such a model could be used to analyse vulnerabilities and to raise risk
awareness. It could help to reveal complex attack combinations and support
systematic evaluation of possible solutions. This approach aims at optimising
security and protection of networked systems with given resources.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

30

References
Paul Ammann, Duminda Wijesekera, and Saket Kaushik (2002). Scalable, graph-
based network vulnerability analysis. In Proceedings of the 9th ACM conference
on Computer and communications security, pages 217–224. ACM Press New
York, NY, USA. ISBN 1581136129.

Urs E. Gattiker, Hervé Debar, Gasper Lvarencic, Giannis A Pikrammenos,
Jerman Borka, Roland Rieke, Atta Badii, Yong Hua Song, Theis Søndergaard,
Rainer Fahs, Helga Treiber, and Mario Wolframm (2003). Cyber attack methods
detection & information exploitation research project proposal. URL
http://www.eicar.org/camdier/index.html.

S. Gürgens, P. Ochsenschläger, and C. Rudolph (2002 a). Authenticity and
Provability - a Formal Framework. GMD Report 150, Fraunhofer-Institute for
Secure Telecooperation.

S. Gürgens, P. Ochsenschläger, and C. Rudolph (2002 b). Role based
specification and security analysis of cryptographic protocols using asyn
chronous product automata. In DEXA 2002 International Workshop on Trust and
Privacy in Digital Business. DEXA. URL
http://www.sit.fhg.de/english/META/meta_publications/doc/Dexa2002abstract.pdf
Copyright: © 2002, IEEE. All rights reserved.

Somesh Jha, Oleg Sheyner, and Jeannette M. Wing (2002). Two formal analyses
of attack graphs. In 15th IEEE Computer Security Foundations Workshop
(CSFW15 2002), 2426 June 2002, Cape Breton, Nova Scotia, Canada, pages
49–63. IEEE Computer Society.

Somesh Jha and Jeannette M. Wing (2001). Survivability analysis of networked
systems. In Proceedings of the 23rd international conference on Software
engineering, pages 307–317. IEEE Computer Society.

Christopher Krügel and Thomas Toth (2002). Distributed pattern detection for
intrusion detection. In Network and Distributed System Security Symposium
Conference Proceedings: 2002, 1775 Wiehle Ave., Suite 102, Reston, Virginia
20190, U.S.A.. Internet Society. URL citeseer.nj.nec.com/501183. html

E. Luiijf, H. Burger, and M. Klaver (2003). Critical infrastructure protection in the
netherlands: A quickscan. In EICAR Conference Best Paper Proceedings.

Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducassé (2002). M2d2:
A formal data model for ids alert correlation. In Recent Advances in Intrusion
Detection, 5th International Symposium, RAID 2002, Zurich, Switzerland,
October 1618, 2002, Proceedings, volume 2516 of Lecture Notes in Computer
Science, pages 115–137. Springer.

Author: Rieke, Roland EICAR 2004 Conference CD-rom: Best Paper Proceedings

EICAR 2004 Conference CD-rom Editor: Urs E. Gattiker
ISBN: 87-987271-6-8 Copyright © 2004 by EICAR e.V.

31

P. Ochsenschläger, J. Repp, and R. Rieke (2000a). The SHVerification Tool. In
Proc. 13th International FLorida Artificial Intelligence Research Society
Conference (FLAIRS2000), pages 18–22, Orlando, FL, USA. AAAI Press. ISBN
01577351134.

Peter Ochsenschläger, Jürgen Repp, and Roland Rieke (2000b). Abstraction and
composition – a verification method for cooperating systems. Journal of
Experimental and Theoretical Artificial Intelligence, 12:447–459.

Peter Ochsenschläger, Jürgen Repp, Roland Rieke, and Ulrich Nitsche (1999).
The SHVerification Tool AbstractionBased Verification of Cooperating Systems.
Formal Aspects of Computing, The International Journal of Formal Method, 11:1–
24.

Cynthia A. Phillips and Laura Painton Swiler (1998). A graph-based system for
network-vulnerability analysis. In NSPW ’98, Proceedings of the 1998 Workshop
on New Security Paradigms, September 2225, 1998, Charlottsville, VA, USA,
pages 71–79. ACM Press.

Roland Rieke (2003). Development of formal models for secure eservices. In
Eicar Conference 2003. URL http://www.sit.fhg.de/english/META/
meta_publications/doc/Eicar2003.pdf.

Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lippmann, and Jean-
nette M. Wing (2002). Automated generation and analysis of attack graphs. In
2002 IEEE Symposium on Security and Privacy, May 1215, 2002, Berkeley,
California, USA, pages 273–284. IEEE Comp. Soc. Press.

Laura P. Swiler, Cynthia Phillips, David Ellis, and Stefan Chakerian (2001).
Computerattack graph generation tool. In DARPA Information Survivability
Conference and Exposition (DISCEX II’01) Volume 2,June 12 14, 2001,
Anaheim, California, pages 1307–1321. IEEE Computer Society.

