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Abstract—Enforcing security in process-aware information
systems at runtime requires the monitoring of systems’ operation
using process information. Analysis of this information with re-
spect to security and compliance aspects is growing in complexity
with the increase in functionality, connectivity, and dynamics
of process evolution. To tackle this complexity, the application
of models is becoming standard practice. Considering today’s
frequent changes to processes, model-based support for security
and compliance analysis is not only needed in pre-operational
phases but also at runtime.

This paper presents an approach to support evaluation of the
security status of processes at runtime. The approach is based
on operational formal models derived from process specifications
and security policies comprising technical, organizational, reg-
ulatory and cross-layer aspects. A process behavior model is
synchronized by events from the running process and utilizes
prediction of expected close-future states to find possible security
violations and allow early decisions on countermeasures. The
applicability of the approach is exemplified by a misuse case
scenario from a hydroelectric power plant.

Keywords-predictive security analysis; process behavior analysis;
security modeling and simulation; security monitoring; critical
infrastructures; security information and event management.

I. INTRODUCTION

Electronic business processes contribute significantly to the
performance of today’s enterprises and their correct execution
is vital for many companies. Automated enactment of business
processes applying Information Technology (IT) does not
only bring competitive advantages but induces higher security
risks. A new Internet security threat report [1] states a more
than 81% surge in malicious attacks including sophisticated
targeted attacks. Yet, existing Business Process Management
(BPM) methodologies often neglect security and dependability
objectives [2]. At the same time, business processes become
more complex encompassing a wide range of heterogeneous
systems and applications and undergo continuous changes
to sustain business competitiveness [3]. Another dimension
is added by the inter-connection of business processes with
modern automated management systems that support remote
control of multiple infrastructures. Thus, cross-layer connec-
tions between high-level business processes, organizational
processes, and low-level technical processes controlling sensors
and actuators in cyber-physical systems emerge. Increasing
complexity and changeability complicates analysis of distinctive

process properties demanding frequent adjustments of process
models to address changing business needs [4]. This involves
not only functional correctness of a process model, but also
related compliance and security features. Hard-coded controls
can restrain flexibility required to ensure adequate formal
representation of evolving processes [5], [6].

We present an approach for predictive security analysis at
runtime, which allows to add security requirements regarding
process behavior during execution without the need to modify
the corresponding process model. In doing so, we do not
intend to diminish the significance of security-by-design. Our
work is aimed as a critical add-on in order to address the
dynamics of electronic business processes. Based on close-
future behavior models computed on-the-fly from process
specifications, we demonstrate early detection of deviations of
process execution from expected behavior which can be caused
by attacker intervention. We propose a new method for security
analysis at runtime exploiting process behavior models, which
enables on-the-fly security compliance checks and prediction of
close-future violations of security requirements. The proposed
integration of simulation and runtime monitoring allows for
early security warnings and predictive alarms on possible
security critical states in close future. In order to demonstrate
how our model-based runtime analysis is applied, we have
chosen processes from a hydroelectric power plant in a dam
that was analyzed in a European research project [7]. We
describe an implementation of our approach and provide results
of evaluation of specific aspects, such as effects of the number
of security requirements, different abstraction levels and the
variation of prediction depths.

Section II of this paper gives an overview of our approach for
predictive security analysis at runtime. Section III introduces
the operational process model, the close-future behavior model,
and the synchronization with the running process. Section IV
presents the security model applied at runtime to identify
security relevant states. Section V provides an example for the
runtime analysis of security requirements from a hydroelectric
power plant. Section VI describes the prototype implementation
and evaluation results. Section VII reviews related work and
Section VIII presents conclusions and further research.
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II. PREDICTIVE SECURITY ANALYSIS AT RUNTIME

In this section we introduce a new model-based approach
for Predictive Security Analysis at Runtime (PSA@R). Our
approach integrates formal process modeling with simulation
of (close-future) process behavior triggered by real-time data.
Process behavior models are used to identify and predict
violations of security requirements during process execution.

In PSA@R the operation of a system or a system of
systems is observed analyzing events received from this system.
PSA@R is not executed by this observed system but rather
by an observing system such as a Security Information and
Event Management (SIEM) system. It is presupposed here that
the observing system itself is trustworthy. A SIEM system
can be easier protected against attacks than the system under
observation. Regarding the observed system it is assumed that
its purpose is given by technical, organizational, and business
processes and that the intended behavior can be specified by
process models. The behavior of the observed system is then
a composition of the behaviors of the running processes.

PSA@R operates with formalized views on the control flow
and security properties of a business process that can exist
in any common or application-specific technical workflow
notation [8], [9], [10]. A process model, which provides a
formal representation of the controlled process, and an event
model, an abstraction defining the internal mapping for input
event streams, need to be created at the preliminary stage of
PSA@R. Security requirements to be satisfied during process
execution are formalized by a security model, which must be
derived systematically [11], [12] at the initialization time.

At the analysis stage of PSA@R, the formal models are
applied to monitor and predict process behavior and identify
security relevant states on-the-fly. Figure 1 illustrates steps
of predictive security analysis at runtime. Given the process
model and the current state of the running process, a process
behavior model representing the adjacent expected future
states of the process can be computed. The process behavior
model is synchronized with the running process through events
received from the execution environment. Incoming events are
interpreted using the event model and mapped to the process
behavior model. Compliance of the predicted states with the
established security policy is evaluated against the security
model. To identify security relevant states on-the-fly PSA@R
uses a new method described in Section IV, which enables
detection of (close-future) requirements violation.

Fig. 1: Analysis stage of PSA@R

III. PROCESS MODEL

This section introduces the formal process model, which is
utilized to reflect the current state of the system and provides the
basis for the prediction of close-future actions. PSA@R uses
a process model given by an Asynchronous Product Automata
(APA) representation that provides a flexible operational
specification concept for cooperating systems [13]. An APA
consists of a family of elementary automata communicating
by common components of their state (shared memory).

Definition 1: An Asynchronous Product Automaton consists
of

• a family of state sets Zs,s ∈ S,
• a family of elementary automata (Φe,∆e),e ∈ E and
• a neighbourhood relation N : E→ P(S).

S and E are index sets with the names of state components
and of elementary automata and P(S) is the power set of S.
For each elementary automaton (Φe,∆e) with Alphabet Φe, its
state transition relation is

∆e ⊆��s∈N(e)(Zs)×Φe×��s∈N(e)(Zs).

For each element of Φe the state transition relation ∆e defines
state transitions that change only the state components in N(e).
An APA’s (global) states are elements of ��s∈S(Zs).
To avoid pathological cases it is generally assumed that S=⋃

e∈E(N(e)) and N(e) 6= /0 for all e ∈ E.
Each APA has one initial state q0 = (q0s)s∈S ∈��s∈S(Zs). In
total, an APA A is defined by

A= ((Zs)s∈S,(Φe,∆e)e∈E,N,q0).

Definition 2: An elementary automaton (Φe,∆e) is acti-
vated in a state q = (qs)s∈S ∈ ��s∈S(Zs) as to an inter-
pretation i ∈ Φe, if there are (ps)s∈N(e) ∈ ��s∈N(e)(Zs) with
((qs)s∈N(e), i,(ps)s∈N(e))∈ ∆e. An activated elementary automa-
ton (Φe,∆e) can execute a state transition and produce a suc-
cessor state p= (ps)s∈S ∈��s∈S(Zs), if qr = pr for r ∈ S\N(e)
and ((qs)s∈N(e), i,(ps)s∈N(e)) ∈ ∆e. The corresponding state
transition is (q,(e, i), p).

However, PSA@R does not depend on the formal method
chosen for model representation. The only requirement is, that
it must be possible to compute the process behavior from
the process model (cf. Section III-C). For example, Petri nets
[9] also meet this requirement and models produced in Petri
Net Markup Language (PNML) [14] by process mining and
discovery tools [15] can be used instead of APA specifications.

A. Process Behavior Model

Formally, the behavior of an operational APA model of a
business process is described by a Reachability Graph (RG),
also referred to as Labeled Transition System (LTS) [16].

Definition 3: The behavior of an APA is represented by all
possible coherent sequences of state transitions starting with
initial state q0. The sequence

(q0,(e1, i1),q1)(q1,(e2, i2),q2) . . .(qn−1,(en, in),qn)
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with ik ∈ Φek , where Φek is the alphabet of the elementary
automaton ek, represents one possible sequence of actions of
an APA.

State transitions (p,(e, i),q) may be interpreted as labelled
edges of a directed graph whose nodes are the states of an
APA: (p,(e, i),q) is the edge leading from p to q and labelled
by (e, i). The subgraph reachable from the node q0 is called
Reachability Graph of an APA.

Example 1: A process specification provides the control
flow structure of a process as a sequence of events and
functions. In an APA model that is derived from a process
specification, the set of possible output events of a process
function can be used as the alphabet of the elementary
automaton representing the function [17]. So the interpretation
i is the output event. An example for a state transition is:
(p,(transfer,event = ′critical′),q). The parameters of this state
transition are the state p, the tuple composed of the elementary
automaton transfer and its interpretation event = ′critical′, and
the follow-up state q.

B. Event Model

A stream of events characterizes one specific execution trace
of the observed system. This trace is a shuffle of the traces of
the executed process instances. The event model determines
the internal mapping for the runtime events defined by an event
schema. To reduce the complexity only data required for the
analysis or in generated alarms should be used in the model.

Formally, it is assumed that an event represents a letter of
the alphabet that denotes the possible actions in the system.
Different formal models of the same system are partially
ordered with respect to different levels of abstraction.

Definition 4: Abstractions are described by so-called al-
phabetic language homomorphisms. These are mappings h∗ :
Σ∗ −→ Σ′∗ with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ)⊂
Σ′ ∪ {ε}. So they are uniquely defined by corresponding
mappings h : Σ−→ Σ′∪{ε}. In the following both the mapping
h and the homomorphism h∗ is denoted by h. In general, let
Ľ ⊂ Σ̌∗ and L ⊂ Σ∗ be prefix closed languages. Ľ is called
finer than L and L is called coarser than Ľ iff an alphabetic
homomorphism ν : Σ̌∗→ Σ∗ exists with ν(Ľ) = L.

Let now P denote a finite set of process instances i of some
process with i ∈ P and let Σi denote pairwise disjoint copies
of Σ. The elements of Σi are denoted by ei and ΣP :=

⋃̇
i∈P

Σi.

The index i describes the bijection e↔ ei for e ∈ Σ and ei ∈ Σi.
Now the projection π identifies events from a specific process
instance i.

Definition 5: For i ∈ P, let πP
i : Σ∗P→ Σ∗ with

πP
i (er) =

{
e | er ∈ Σi
ε | er ∈ ΣP \Σi

.

This is similar to the notion of a correlation condition [18]
that defines which sets of events in the service log belong to
the same instance of a process.

Remark 1: For effective use of PSA@R it is assumed that
a process instance projection is possible for each event. In
many applications, a process instance identification is directly

available as an attribute of the event. Sometimes a set of
attributes identifies the process instance. In some cases the
assumption about pairwise disjoint alphabets is not true.

If the event data contain redundant or irrelevant attributes, a
proper subset of attributes for use in model construction has to
be selected. In order to avoid state space explosion problems,
the coarsest abstraction that still contains all security relevant
information should be used.

Example 2: Let us assume that Σ is the alphabet of events
from the measured system and for a given event e the term
#(e) denotes the value of an attribute involved in a transaction.

Let h2,h3 : Σ∗ → {′high′, ′medium′, ′low′}∗ the homomor-
phisms given by

h2(e) =
{ ′high′ | 105 < #(e)

′low′ | #(e)≤ 105

h3(e) =





′high′ | 105 < #(e)
′medium′ | 103 < #(e)≤ 105

′low′ | #(e)≤ 103
.

Then h3 and h2 can be used to differentiate process control flow
with respect to events with different attribute values. h3 is finer
than h2 because ν : {′high′, ′medium′, ′low′}∗→{′high′, ′low′}∗
exists.

C. Prediction of Close-future Process Actions

At runtime, the current state of the process behavior model of
the process instance i is synchronized with the running process
using the projection of the measured events to the respective
state transitions (p,(e, i),q) of the RG. PSA@R uses the RG
to predict the close-future behavior of the process instance. As
the process description is formalized in the process model, a
subgraph of the RG can always be computed on-the-fly starting
with the current state of the process instance. The prediction
depth is the depth of this subgraph starting from the current
state.

Example 3: The approach taken for the prediction of close-
future behavior within a process is illustrated by Fig. 2.
The ellipses in the event stream pane denote the observed
events, whereby the filled ellipses e0, e1, e2, and e3 denote
the events that belong to the specific process instance i, i.e.,

event
stream

e0

e1

e2

e3

process
behavior
model

q0
q1

q2

q3 q′3

q′2qx

process
model

e′0

f1

e′1

f2 f3

e′2 f4

e′3

past time future time

Fig. 2: Predict close-future process behavior
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e0,e1,e2,e3 ∈ Σi. The ellipses in the process model pane
denote abstract events with respect to the event model, e.g.,
e′1 = h(πP

i (e1)). The dotted arrows denote this mapping. The
rectangles in the process specification pane denote the process
functions and the solid lines denote the transitions. If in
Fig. 2 the function f2 is modeled by the elementary automaton
transfer and e′3 = h(πP

i (e3)) =
′high′ and the depicted process

instance i is in the state q1 and the event e3 is received, then
the transition (q1,(transfer,event = ′high′),q3) will match the
current situation. The process specification contains possible
close-future functions f3 and f4 and associated events to be
predicted. The dashed arrows in Fig. 2 denote the predicted
close-future process behavior.

IV. ON-THE-FLY IDENTIFICATION OF CRITICAL STATES

In addition to the predicted process behavior, the security
model is needed to identify security relevant states of the
current state of the business process. As a notation for the
security model we use monitor automata.

Definition 6: A monitor automaton M consists of a set M
of labeled states, an alphabet Λ of predicates on RG state
transitions, a transition relation TM ⊆M ×Λ×M , a set
of initial states /0 6= M0 ⊂M , and a set of accepting states
M f ⊂M .

Predicates ofM are applied to state transitions (pi,(e j, ik),ql)
of the RG.

Example 4: The predicate (,(,event = ′high′),) is true if
′high′ is bound to the interpretation variable event of the
interpretation ik. No condition for the predecessor state pi,
successor states ql and the elementary automaton e j is given.

With a monitor automaton it is possible to express security
requirements with respect to current and close-future behavior
of a process represented by a RG. In this case accepting states
refer to security critical states. Each state of the RG has an
associated state set of M, which is computed during simulation.
Security critical states are reached whenever an accepting state
of M becomes a member of such state set.

State sets of M are successively assigned to RG states during
simulation as follows: M0 is assigned to the initial state q0 of
the given RG. Each predicate λ ∈ Λ of M is of the form λ (x),
where x is a state transition (p,(e, i),q) of the RG. Each λ ∈Λ
is associated with one of the transitions TM of M. During
the run of the simulation, for each transition (qi,(e j, ik),qx) of
the RG, the monitor automaton state set for the RG state qx is
computed as follows:
Let Ai ⊆M be the state set of M assigned to the current RG
state qi. The set TAi of transitions to be checked is now given
by:

TAi = {(mm,λo,mn) ∈TM | mm ∈Ai}.
All predicates λo have to be checked for the current transitions
(qi,(e j, ik),qx) of the RG. Based on the monitored transitions
MT x new states Bx of M and the changed states Cx of M
are computed as follows:

MT x := {(mm,mn) ∈M ×M | (mm,λo,mn) ∈ TAi ∧
λo((pi,(e j, ik),qx))}

Bx := {mn ∈MT x|(mm,mn) ∈MT x}
Cx := {mm ∈MT x|(mm,mn) ∈MT x}

The computation of Bx and Cx will be implicitly assumed
when used in Algorithm 1 and 2. The set RS n includes
possible states in the RG which represents the current state of
the real system. After the occurrence of a certain event and
extension of the RG if necessary, the new set RS n+1 and
the corresponding monitor automaton state set A r

i has to be
computed for every state qi ∈RS n+1 by Algorithm 1.

Algorithm 1 (Security compliance check):
SP := /0
for (pi,(e j, ik),ql) ∈ {pi|pi ∈RS n}∧λe((pi,(e j, ik),ql)) do

SP := SP∪{pi}
if Bl = /0 then

if ql ∈ SP then
A r

l := A r
l ∪A r

i
else

Al := Ai
else

if ql ∈ SP then
A r

l := A r
i ∪Bl

else
A r

l := Bl ∪ (A r
i \Cl)

RS n+1 := SP
For the RG state set RS n+1 new state sets A p

i of M have
to be computed for every predicted RG state qi. The function
visit sets a mark to a certain state which can be checked by
the predicate visited. The predicate closer indicates that the
current path to elements of the state set RS n+1 to the node
given as a parameter is shorter than the paths to this node
processed before. The monitor automaton state sets of the
predicted states which can be reached from states of the set
RS are computed by Algorithm 2.

Algorithm 2 (Predict security violations):
S := /0
for ql ∈RS n+1 do

S := S∪{ql)}
while S 6= /0 do

S := S\{qi2}
for (qi2 ,(e j2 , ik2),ql2) ∈ RG do

A :=
{

Ar
i2 | ¬visited(qi2)∧A p

i2 = /0
A p

i2 | else
visit(qi2)
if Bl2 = /0 then

if visited(ql2) then
A p

l2
:= A p

l2
∪A p

i2
if closer(ql2 ,RS n+1) then

S := S∪{ql2)}
else

A p
l2

:= A p
i2

S := S∪{ql2}
else

if visited(ql2) then
A p

l2
:= A p

i2 ∪Bl2
else

A p
l2

:= Bl2 ∪ (A
p

i \Cl2)

S := S∪{ql2)}
In this algorithm we do not analyze the consequences

of reaching security critical states. Trigger actions such as
generating alerts, which are executed when accepting monitor
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Fig. 3: Attribute selection and mapping

automaton states become members of a state set, can be defined.
Different security properties might be monitored simultaneously
by allowing more than one transition of the monitor automaton
to be triggered at the same time.

V. HYDROELECTRIC POWER PLANT SECURITY

In order to demonstrate what kind of security requirements
we consider and how our model-based runtime analysis is
applied, we use a combined technical and organizational process
from a hydroelectric power plant in a dam [7] and explain the
evaluation of security requirements for this process at runtime.
Since dams are complex infrastructures, a huge number of
parameters must be monitored to guarantee safety and security.
Which parameters are actually monitored, depends on the dam’s
structure, design, purpose and function [19].

Figure 3 shows a mapping (an event model) with regard to
the events from dam sensors, cameras, RFID scanners, and
syslog.

Here, we examine a misuse case related to the insider threat
that is still prevalent and posing a serious risk to critical
infrastructures [20]. We assume that the respective security goal
is given as: All safety critical actions in the control room are
carried out by a dam operator with administrative rights. Other
types of security requirements, which could be supervised by
PSA@R, are typical authenticity and integrity requirements like
the following example: Whenever a certain control decision
is made, the input information that presumably led to it must
be authentic [19]. Specifically, authenticity can be seen as the
assurance that a particular action has occurred in the past.

A. Misuse Case Scenario

The storage dam of the hydroelectric power plant is remotely
controlled by a Supervisory Control And Data Acquisition

not_supvervised_other

not_supervised_empty

both

other_staff

operator

CR_empty

   Gate_actions),);
(,(event ?

   other_staff’),);
(,(event=no_    ’operator),);

(,(event=

    ’operator’),);
(,(event=

   ’other_staff’),);
(,(event=

   Gate_actions),);
(,(event ? 

    ’no_operator’),);
(,(event=

    ’no_other_staff’),);
(,(event=

    ’no_other_staff’),);
(,(event=

    ’operator’),);
(,(event=

    ’other_staff’),);
(,(event=

    ’other_staff’),);
(,(event=

    ’no_operator’),);
(,(event=

    ’operator’),);
(,(event=

Fig. 4: Monitor automaton for hydroelectric power plant

(SCADA) system from the control station located in the
control room. Physical (Radio Frequency Identification (RFID)
based) and logical access controls are deployed. A disgruntled
employee of the dam with a non-administrative role (i.e.,
cleaning staff) but who is enabled to access the control room
uses stolen administrator credentials to open dam gates.

There are several attack steps. First, the disgruntled employee
uses his RFID badge to enter the control room while an
administrator is inside. The disgruntled employee waits until
the administrator leaves the control room and uses the stolen
administrator credentials to log in into the control system. Then
he issues the open gate command from the control station.
The water gates open discharging the dam’s reservoir. The
decrease of the water level endangers the people using the
dam’s reservoir for recreational activities.

Note, that this attack can be discovered if the system is able
to detect that the administrator command was issued while no
employee with the administrator role had accessed the control
room with her badge.

B. Specification of a Monitor Automaton

The security requirements that certain actions of the dam
workflows have to be supervised will be controlled by a monitor
automaton M as introduced in the previous section. Figure 4
shows a specification of M.

The initial state of M CR empty (control room is
empty) is marked by the filled circle. The critical states
not supervised empty and not supervised other are marked
by the circle with the small filled circle inside. These states
reflect the situation that an action from the set Gate actions
has been executed while the control room is either empty or
only manned with non-administrative staff. If one of these
states is reached during prediction an alarm will be generated.
The predicates attached to the arcs of M define predicates for
transitions of the RG. This automaton is scheduled according
to the algorithm presented in the previous section during
the computation of the RG in the prediction process. The
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t1 t2 t1 + ∆ t2 + ∆ t3 t4 t3 + ∆

timeline

gate event other staff no operator open Gate

predictive
alert

security
alert

(a) Alert situation

t1 t2 t1 + ∆ t2 + ∆ t3 t4 t3 + ∆

timeline

gate event other staff no operator operator

predictive
alert

corrective
action

(b) Predicted situation not occurred

Fig. 5: Security reasoning

λ predicates in Section IV correspond to the predicates of the
arcs in this automaton.

Predicates of the monitor automaton are applied to state
transitions of the RG (pi,(e j, ik),ql), for example, the predicate
(,(,event = ′no other staff ′ ),) is true if ′no other staff ′ is
bound to the interpretation variable event of the interpretation
ik. No condition for the predecessor and successor state pi,
ql and the elementary automaton e j is given in this example.
The event ′no other staff ′ (all non-administrative staff left the
control room) referenced in the above predicate is a higher level
event generated by preprocessing the low-level events from
the RFID scanners and events from cameras which capture the
motion of staff at the entrance of the control room.

C. Evaluation of State Transitions

In order to exemplify the security analysis at runtime, let
us assume that the system is in a state where an operator
is present in the control room, there is only one monitor
automaton as shown in Fig. 4 defined, and the current state
of the monitor automaton is operator. We now describe the
reasoning process at runtime. Figure 5a shows a possible
timeline of events. A security warning indicates a situation
where a security requirement is broken but has no negative
impact at creation time. A predictive alert is raised when a
broken security requirement might lead to a security critical
situation in the close future. A security alert is raised if a
security critical situation has been detected. These warnings
and alerts are mapped to corresponding events and fed into
the runtime environment.

If at time t1 an event from a gate function is received, then
the state component of the process model representing the
status of the gate will be changed but the state of the monitor
automaton will not change. The reachability analysis does not
“see” an upcoming security violation within the scope ∆, so no
alarm has to be triggered.

If at time t2 > t1 the event ′other staff ′ produced by the
RFID scanners of the control room is received, then the state
component of the process model representing the manning of
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Fig. 6: Architecture of the PSA

the control room will be changed and the monitor automaton
changes the state to both. No security violations is “seen”
within the scope ∆.

If at time t3 > t2 the event ′no operator′ is received which
indicates that the last operator has left the control room, then
the state component of the process model representing the
manning of the control room will be changed and the monitor
automaton also changes the state to other staff . Now in one
possible process execution sequence, an event from a gate
function such as open Gate is reachable within ∆. In this
situation the reachability analysis shows that this function
would violate an associated security requirement. Therefore, a
predictive alert is raised because a broken security requirement
might lead to a security critical situation in the close future.

If at time t4 > t3 an event from a gate function such as
open Gate is received, then the monitor automaton changes to
the critical state not supervised other. As a security critical
situation has now been detected, a security alert is raised.

Now let us assume that at time t3 +∆ an event is received
which indicates that an operator is back in the control room and
the critical state was not reached as predicted. In this case, we
know that the issued predictive alert did not lead to a security
alert (cf. Fig. 5b). Therefore, a corrective action such as the
reduction of the security warning level or lifting of restrictions
on the business process may be necessary.

VI. EVALUATION OF SECURITY ANALYSIS AT RUNTIME

To evaluate the performance of different modeling strategies
in the scope of PSA@R, we have implemented a prototype, the
PSA, that supports the complete life-cycle of security analysis
at runtime from formal process specification to exhaustive
validation, including visualization and inspection of computed
RGs and monitor automata. Our implementation is based on
Common LISP [21] and technical specifications from [13].

A. Prototype Architecture

Figure 6 shows the architecture of the PSA consisting of two
main parts: the PSA Modeler that provides functionality for
process formalization and the PSA Core that performs process
security analysis. “I” and “O” are input and output interfaces.

During initialization an operator uses the PSA Modeler
components to formalize input required for process simulation.
The Event Modeler supports the derivation of an event model
from given event schemata (cf. Fig. 3) and stores the respective
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Fig. 7: Execution time measurements

mapping for interpretation of runtime events. The Process
Modeler allows to formalize process specifications using
methods introduced in Section III. The Security Modeler
provides means for graphical specification of monitor automata
representing security models (cf. Section IV).

To launch the security analysis the PSA models with initial
configurations such as the initial state of a process model
and an active security model need to be loaded into the PSA
Core in the form of compiled code. During the monitoring
and analysis stage the PSA Core components receive runtime
events from the observed system, for example, events from
dam’s SCADA system and RFID scanners. The Event Monitor
interprets these events in accordance with the defined event
model. The normalized events are fed to the Process Monitor
that performs behavior prediction based on the process model.
If a legitimate event does not comply with the model, the
PSA supports an adjustment of the model on-the-fly within
the process modeler utilizing backward references from the
compiled process model. To detect security violations the
information about predicted state transitions is forwarded to
the Security Monitor. By executing the security model the
Security Monitor identifies process states critical from the
security perspective and issues alerts that are forwarded to
decision support and reaction for further processing. Backward
references within the compiled security model allow to show
the current state within the security modeler.

B. Evaluation

In the project MASSIF [22] PSA@R is currently applied
to check security requirements in four industrial domains:
(i) the management of the Olympic Games IT infrastruc-
ture [23]; (ii) a mobile phone based Mobile Money Transfer
System (MMTS) [24], facing high-level threats such as money
laundering; (iii) managed IT outsource services for large
distributed enterprises and (iv) an IT system supporting a
critical infrastructure (dam) [7]. We used the hydroelectric
power plant scenario (iv) to demonstrate the capability of
the PSA prototype to process and correlate events from
heterogeneous sources (cf. Section V). To evaluate the PSA

prototype with respect to performance issues, however, we used
event logs from scenario (ii) as a resource intensive application
which requires high throughput. In this case, events referred to
transactions conducted in an MMTS and processes represented
user behaviors observed from transaction logs [25]. To achieve
high load a recorded event stream was sent directly to the PSA
socket interface. Measurements were produced on a personal
computer with Intel Core 6700 CPU and 4GB memory.

The measurements presented evaluate the execution time and
the number of events received by the PSA. We have examined
four aspects important from the application perspective: (i)
effects of the number of security requirements to the execution
time; (ii) effects of the abstraction level to analysis; (iii) effects
of cycle reduction in a RG; (iv) effects of changing prediction
depths. The prediction depth p = 4 was used in (i)–(iii), but
did not effect the performance of the simulation because
the complete RG could be computed in advance. Figure 7a
shows that the execution time depends linearly on the number
of received events and the gradient of this linear slope is
determined by the number of security requirements. In order
to investigate effects of the abstraction level we have evaluated
finer and coarser process models. A coarser model results
in less successor states and thus reduces the effort for the
monitoring algorithm. The abstraction level can be adjusted,
for instance, as shown in Example 2. In [8] Mendling presented
an extensive metrics analysis on four collections of 2003 Event-
driven Process Chain (EPC) process specifications. In this study,
the number of nodes a connector is in average connected to
resulted in 3.56 for the mean value µ and 2.40 for the standard
deviation σ . Therefore, for our performance measurements we
used a number s ∈ {2,3,4,5} of successor states. Figure 7b
shows that the execution time depends linearly on the number
of received events. The moderate increase of gradients of the
corresponding linear slopes was caused by the optimization of
the monitoring algorithm related to cycles in the RG. These
experiments show that one month of data logged in an MMTS
(285.619 events from 50.265 processes) is analyzed by the PSA
within two to eight minutes depending on the model abstraction.
In order to simulate the possible worst case for five successor
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states (four requirements) we produced a synthetic model.
Figure 8a displays the comparison between the MMTS model
and the worst case model. The worst case performance can be
improved by reasonably limiting the number of predicted steps.
Figure 8b illustrates the effects of reduced prediction depth
in the worst case model. During the experiment the security
requirements were successfully checked in all combinations.

VII. RELATED WORK

The work presented here combines specific aspects of
security analysis with generic aspects of process monitoring,
simulation, and analysis. The background of these aspects is
given by the utilization of models at runtime [26]. The proposed
approach is similar to the approaches described in [17], [27]
in terms of event-driven process analysis. However, in our
work we focus on an integrated algorithm for computation
of reachability graphs with evaluation of security properties
given by monitor automata. Recently, runtime monitoring of
concurrent distributed systems based on Linear Temporal Logic
(LTL), state-charts, and related formalisms has also received
attention [28]. However, these works are mainly focused on
error detection, e.g., concurrency related bugs.

Approaches focusing on security models at runtime are given
in [29], [30]. The first work proposes a novel methodology to
synchronize an architectural model reflecting access control
policies with the running system. Therefore, the methodology
emphasizes policy enforcement rather than security analysis.
The integration of runtime and development-time information
on the basis of an ontology to engineer industrial automation
systems is discussed in [30]. Schneider [31] analyzed a class
of safety properties and related enforcement mechanisms that
work by monitoring execution steps of some target system,
and terminating the target’s execution, whenever it is about to
execute an operation, which would violate the security policy.
Extensions of this approach are discussed in [32]. However,
security automata as defined in [31] are related to a specific
trace of execution, whereas in the monitor automata concept
proposed here, the whole RG is used as a reference to the
possible system’s behavior. Patterns and methods to allow for
monitoring security properties are developed in [33], [34], [35].

Diverse categories of tools applicable for modeling and
simulation of business processes are based on different semi-
formal or formal methods such as EPCs [8] or Petri nets
[9]. Likewise, some general-purpose simulation tools such
as CPNTools [36] were proven to be suitable for simulating
business processes. The process mining framework ProM [15]
supports plug-ins for different types of models and process
mining techniques. However, independently from the tools and
methods used, such simulation tools concentrate on statistical
aspects, redesign, and commercial optimization of the business
process. On the contrary, we propose an approach for on-the-fly
dynamic simulation and analysis on the basis of operational
formal models. This includes consideration of the current
process state and the event information combined with the
corresponding steps in the process model. We consider the
framework presented in [37] on runtime compliance verification
for business processes as complementary to our work.

VIII. CONCLUSIONS AND FURTHER WORK

In this paper, we presented an integrated approach called
PSA@R to analyze the security status of a process and to
identify possible violations of the security policy in close
future. The approach also provides early awareness about
deviations of a running process from expected behavior as
specified by the model. When such anomalies refer to process
misbehavior or disruption, alarms will be raised for decision
support and reaction. Moreover, we described how to extend
process behavior computation with algorithms for on-the-fly
security compliance checks and prediction of close-future
security violations. Thus, our integrated security analysis
approach identifies current and close-future violations of the
security policy. As security relies on the compliance of actual
behavior with the given specifications this early detection
of changes and reaction elevates security of the process in
question. In combination with other novel applications PSA@R
enables anticipatory impact analysis, decision support and
impact mitigation by adaptive configuration of countermeasures.
Moreover, we assume that our results can also be applied to on-
the-fly analysis of compliance and dependability requirements.
In further work, we consider to integrate methods, such as the

8



one described in [38] using metrics to quantify deviations from
process specifications.
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Tech. Rep., 2006.

[29] B. Morin, T. Mouelhi, F. Fleurey, Y. Le Traon, O. Barais, and J.-
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