

MAnagement of Security information and events

in Service InFrastructures

MASSIF
FP7-257475

Architecture Document

Activity N/A Work Package N/A

Due Date 2012-04-23 Submission Date 2012-04-27

Main Author(s) Paulo Verissimo, Nuno Neves (FFCUL); Alexander Goller, Alberto Roman

Limancero (AlienVault); Susana González, Rubén Torres (ATOS); Luigi Romano,

Salvatore D'Antonio (CINI); Hervé Debar (IT); Roland Rieke, Zaharina Stoynova

(SIT); Igor Kotenko, Andrey Chechulin (SPIIRAS); Ricardo Jimenez-Peris, Claudio

Soriente (UPM); Nizar Kheir, Jouni Viinikka (6cure).

Contributors Alysson Bessani, Nuno Neves, António Casimiro (FFCUL); Carlos Arce, Elsa

Prieto(ATOS); Gustavo Gonzalez Granadillo, Malek Belhaouane (IT); Juergen Repp,

Maria Zhdanova (SIT); Olga Polubelova, Evgenia Novikova (SPIIRAS).

Version V1.5 Status Final

Dissem. Level PU Nature R

Keywords SIEM, Distributed Systems Architecture, structural view, functional view, payload

system, data layer, event layer, application layer, Intrusion Detection, Security,

Resilience, Generic Event Translation framework, MASSIF Information Switch,

Resilient Event Bus, Event Processing, Decision Support & Reaction, Predictive

Security Analyser, Attack Modelling and Security Evaluation component,

visualization component,

Reviewers Rodrigo Díaz (ATOS), Luigi Coppolino (Epsilon), Alexander Goller (Alienvault),

Jouni Viinikka (6Cure), Gunnar Bjoerkman (ABB AG, Advisory Board Member)

Part of the Seventh Framework Programme

Funded by the EC - DG INFSO

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 2/63

Version history

Rev Date Author Comments

V0.1 2011-12-12 P. Verissimo (FCUL) ToC

V0.2 2011-12-29 E.Prieto, S.González (ATOS) Rationale, roadmap, functional requirements and

application services.

V0.3 2011-01-10 C.Arce, S.González, E.Prieto,

R.Torres (ATOS)

Functional requirements update.

V0.5 2012-02-02 P. Verissimo (FFCUL) First integrated draft.

V0.6 2012-02-24 P. Verissimo (FFCUL) Second integrated draft.

V1.1 2012-03-05 P. Verissimo (FFCUL) Final draft for comments.

V1.2 2012-03-31 P. Verissimo (FFCUL) Final draft for comments (2
nd

 ed.) after revision

of application service interactions.

V1.3 2012-04-23 P. Verissimo (FFCUL) First release after appointed reviews.

V1.4 2012-04-25 R. Diaz, E.Prieto (ATOS) Integration of final comments and final review.

V1.5 2012-04-27 E.Prieto (ATOS) Final updates, final edition and official delivery.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 3/63

Glossary of Acronyms

AGG Attack graph generator

AMSEC Attack Modelling and Security Evaluation Component

APA Asynchronous Product Automata

API Application Programming Interface

CEP Complex event processing

CP Calm-Paranoid

CRUD Create, Read, Update, and Delete

DB Database

DBMS Database Management System

DMZ Demilitarized zone

DoS Denial of Service

DS&R Decision Support and Reaction

GAP GET Access Point

GET Generic Event Translation

GPS Global Positioning System

GUI Graphical User Interface

HIDS Host-based Intrusion Detection System

ICT Information and Communications Technology

IDMEF Intrusion Detection Message Exchange Format

IDS Intrusion Detection Systems

IP Internet Protocol

KPI Key Performance Indicator

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

MAC Message Authentication Codes

MASSIF Management of Security information and events in services infrastructures.

MEH MASSIF Events Handler

MIA MASSIF Information Agents

MIS MASSIF Information Switch

MM Malefactor modeller

NTP Network Time Protocol

OrBAC Organization-Based Access Control

OSSEC Open Source Security

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 4/63

OSSIM Open Source Security Information Management

PEP Policy Enforcement Points

PSA Predictive Security Analyzer

PyOrBAC Python OrBAC

QoS Quality of Service

RBAC Role-Based Access Control

REB Resilient Event Bus

RORI Return on Response Investment

SCADA Supervisory Control and Data Acquisition

SE Security Evaluator

SG Specification Generator

SIEM Security Information and Event Management.

SOA Service-Oriented Architecture

SP Security Probe

TCB Timely Computing Base

TCP Transmission Control Protocol

TPM Trusted Platform Module

VLAN Virtual LAN

VPN Virtual Private Network

WAN Wide Area Network

XML eXtensible Markup Language

XSD XML Schema

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 5/63

Executive Summary

The main goal of the present architecture document is to depict a global view of the MASSIF system

and of the solution it intends to achieve. This document is primarily for external users to understand

how the MASSIF solution is structured and how its components work together. Therefore the

document provides a rather high-level description of different elements (structural layers, components

and functionalities). Nevertheless, for complete information, we strongly recommend the reading of

official MASSIF project deliverables found in the project website (http://www.massif-project.eu/).

Consortium developers may also be interested in this documentation to understand the relationships

and dependencies among components within an integrated framework.

MASSIF Architecture Overview

The MASSIF architecture is represented through several views that convey different perspectives,

levels of abstraction and needs. Yet a technical approach has been considered for all of them. The

MASSIF architecture is intended to be as general as possible and does not address any particular

scenario or use-case that could add specific constraints to the common solution. Thus it is worth

pointing out that not every single component is subject to be adapted to each considered scenario, but

we will have different instantiations of the general architecture depending on the given characteristics

of the scenario. Furthermore, the MASSIF architecture, which is open, is intended to be powerful and

generic enough to allow future system integrations, and support different use-cases from the ones

foreseen in this project, by third parties.

The MASSIF architecture document provides an integrated view of the project, cross-cutting the

different activities. In order to give the reader a perspective on the correspondence between

components and activities, such mappings onto the concrete project activities can be found at the end

of this document in the annexes section.

A diagnosis of the shortcomings of current Security Information Event Management (SIEM) systems,

which led in part to the proposal of the MASSIF architecture, can be described succinctly by the

following: inability of encompassing ICT infrastructures with global deployment, since they normally

consider events from single organizations; incapability of providing a high degree of trustworthiness

or resilience in event collection, dissemination and processing, thus becoming susceptible to attacks on

the SIEM systems themselves; insufficient correlation and lack of countermeasure capabilities;

centralized rule processing, making scalability difficult by creating bottlenecks and single points of

failure.

Addressing these problems implies a set of functional, as well as non-functional requirements, to be

met by the MASSIF architecture. Some functional requirements bring about innovative functionality

compared with existing SIEM. On the other hand, satisfying non-functional requirements such as

resilience, understood as the capacity to maintain acceptable levels of security and dependability in

harsh operating conditions, is considered by MASSIF a key asset of critical SIEM systems, given the

current and expected severity of advanced persistent threats or targeted attacks. Satisfying those

attributes and requirements implies meeting a set of key objectives:

- Scalable data acquisition and collection of huge amounts of events from diverse and

geographically spread nodes.

- Distributed and near real-time aggregation, dissemination and processing of events; alert

generation and incident notification; countermeasure propagation.

- Scalability and elasticity of correlation, across integrated and distributed engine implementation

alternatives.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 6/63

- Clear decoupling between the target (monitored) and SIEM (monitoring) system, for minimal

impact on the observed infrastructure, and adaptation to varying target/SIEM system

combinations.

- Resilient operation of the above against faults and attacks of incremental severity, maintaining

availability, integrity and confidentiality.

When reflecting about key non-functional aspects of the MASSIF SIEM architecture, such as

scalability, versatility and resilience, one has to take into account:

- Different interaction realms, such as: multiple and (mainly) unprotected edge facilities; hostile

large-scale communication environment; more protected, centralised or decentralised core

facilities.

- Distinct levels of risk accepted for different instantiations of the architecture in various scenarios,

leading to different levels of resilience as a trade-off for cost and complexity.

- The difficult combination of characteristics such as: security, timeliness, multi-tenancy.

MASSIF Architecture Components

The MASSIF architecture intends to address the aforementioned objectives. The MASSIF SIEM

system is structured as an infrastructural overlay of the monitored payload system. The overlay is

implemented by devices which provide the hooks to the monitored system, MASSIF Information

Switches (MIS), whilst they themselves serve as nodes of the overlay. The MASSIF SIEM

architecture features several layers: Data layer, Event layer, Application layer.

The main purpose of the MASSIF Data layer services is to deliver security information flows up to the

MASSIF core, as indicated by the thick arrow. In order to do so, this layer must provide the

functionalities for the collection, aggregation and normalization of the events generated by the payload

machinery and use the services offered by the MASSIF resilient infrastructure to provide the relevant

security data to MASSIF applications.

The Event layer is provided by a generic events dissemination service, implemented by the Resilient

Event Bus (REB), supported on a dedicated communication service resilient to faults and attacks. The

communication service is implemented by protocols running amongst the MIS. The REB performs

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 7/63

generic event dissemination towards the services in the core-side of the infrastructure, namely the

event processing engine.

The Application layer features several key services. Processing of events in the MASSIF SIEM is

performed by a highly-scalable, elastic correlation engine. The latter is materialized as a parallel

Complex Event Processing (CEP) system. Security monitoring in MASSIF SIEM is supported by the

Predictive Security Analyser (PSA), which performs multi-level predictive security monitoring. The

Attack Modeling and Security Evaluation Component (AMSEC) is intended to complement the direct

analysis functionality of the SIEM system, by providing the architecture with the capability of attack

modeling and security evaluation. The Decision Support and Reaction (DS&R) component provides

an administrative tool based on the OrBAC model, which allows to consolidate the security policy

through the different infrastructure’s components in an organization, and to configure automatically

those components, enforcing the countermeasures to be applied (as indicated by the fine arrow).

These services are helped by a generic visualisation service and a repository service. The purpose of

the visualisation component is to provide a convenient and effective GUI for the interaction with

MASSIF SIEM components. The common MASSIF repository provides cross-layer information

integration from different components of the MASSIF SIEM.

MASSIF Architecture Resilience

Several mechanisms support the seamless integration of resilience into the distributed MASSIF SIEM

system, with the aim of ensuring several levels of security and dependability in an open, modular and

versatile way. The solutions proposed were essentially inspired by two main issues of the current

SIEM arena:

• the monitored environments are increasingly exposed to threats, and more prone to

different sorts of failures;

• dependence on the monitoring systems to ensure secure and dependable operation of the

monitored systems in real-time is increasing dramatically.

For example, in MASSIF we discuss techniques to improve the resilience of specific nodes of the

architecture, such as the MASSIF Information Switches (MIS). The MIS can be built with incremental

levels of resilience, depending on its criticality, from baseline ruggedised simplex machines, up to

physically replicated Byzantine resilient units. Recall that we leave the monitored system essentially

untouched, and base our resilience solutions on the overlay, of which the MIS are key points.

The communication among the MIS plays a fundamental role in the MASSIF resilience architecture.

This feature is responsible for delivering events from the edge services to the core SIEM correlation

engine despite the threats affecting the underlying communication network. The Resilient Event Bus is

an overlay communication subsystem internal to the MASSIF SIEM and thus itself protected, much in

the sense that secure VPN (virtual private networks) are. To give this kind of guarantee we will

employ application-level routing strategies among the MIS nodes, in such a way that they form an

overlay network able to deliver messages in a secure and timely way.

The MASSIF architecture allows for multiple strategies for protection of the core components

executing application layer services. The simplest one is perimeter defence, by isolating the core

components within trusted intranets, only communicating with the outside through a MIS, in two

ways: with the Resilient Event Bus; and with auxiliary systems. Besides executing protection

functions, the core-MIS is itself built with resilience enhancing mechanisms, to protect it from direct

attacks. Besides this baseline protection, SIEM core resilience can be enhanced through more

sophisticated forms of protection, through fault and intrusion tolerance. Such solutions would for

example provide resilience against insider attacks.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 8/63

The publish-subscribe nature of the Resilient Event Bus communication model extends the modularity

of the edge subsystems to the core systems: application servers may actually reside in more than one

protected intranet, offering a multitude of deployment and server placement strategies.

The storage solutions to be deployed in the MASSIF architecture have several purposes, requiring

different levels of resilience. Amongst them, MASSIF foresees storage units dedicated to archival of

critical security information and events, requiring properties like integrity, confidentiality and

unforgeability. One of the obvious uses of such resilient storage is to archive important security

information and events in a way justifiably usable for criminal/civil prosecution of attackers after a

security breach.

MASSIF Architecture vs. existing systems

Security Information and Event management systems have existed for about ten years. Even though

they still can be improved, they are being commercially successful today, which shows that designing

an entirely new SIEM system from the ground up would be an enormous effort for little benefit.

Instead, the MASSIF project has chosen to partner with vendors of two prominent open source SIEM,

OSSIM and Prelude
1
, to complement them with enhanced MASSIF functionality whilst reusing

existing functions provided by these SIEM implementations. The open-source choice (even though we

are also looking at commercial SIEM environments) has been made because it eases analysis and

integration.

1
 Websites of these products: http://communities.alienvault.com/community; http://www.prelude-

technologies.com/en/welcome/index.html.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 9/63

Table of Contents

1. Introduction and Scope ... 11

1.1 Roadmap ... 11

1.2 Rationale ... 12

1.3 Understanding the Functional Requirements ... 12

1.4 Understanding the Non-Functional Requirements ... 14

2. General Overview .. 16

2.1 Main Architectural Features ... 16

2.2 System Model ... 16
2.2.1 Fault model ... 17
2.2.2 Synchrony model ... 19

2.3 Architecture Block Diagram .. 21
2.3.1 Data Services ... 23
2.3.2 Infrastructure Services .. 23
2.3.3 Application Services .. 24

3. Structural View .. 25

3.1 MASSIF Information Switch/Agent ... 26

3.2 Event Bus .. 26

3.3 Edge-side Services... 27

3.4 Core-side Services ... 27

4. Functional View ... 29

4.1 Data Services... 29
4.1.1 Event Collection, Aggregation and Normalisation .. 29
4.1.2 Pre-correlation .. 31
4.1.3 Reaction and Adaptation ... 32

4.2 Infrastructure Services .. 34
4.2.1 Generic Events Dissemination ... 34
4.2.2 Secure Communication ... 35

4.3 Application Services .. 36
4.3.1 Event Processing ... 36
4.3.2 Model Management.. 38
4.3.3 Decision Support and Reaction ... 42
4.3.4 Visualisation .. 44
4.3.5 Repository ... 45

5. Resilience Mechanisms.. 47

5.1 Attack Vectors ... 49

5.2 Incremental MIS Resilience .. 50

5.3 Event Bus Resilience ... 51

5.4 SIEM Core Protection .. 52

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 10/63

5.5 Resilient Storage ... 53

6. MASSIF Architecture vs. Existing Systems ... 55

6.1 OSSIM ... 55
6.1.1 Functional view ... 55
6.1.2 Per component view ... 56

6.2 Prelude .. 57
6.2.1 MASSIF Information Switch - Prelude Manager .. 58
6.2.2 Generic Event Translation Platform - Prelude LML ... 58
6.2.3 Resilient Event Bus - Prelude communications ... 59
6.2.4 Core MASSIF Services - Prelude Correlator, database and Prewikka .. 59

6.3 Potential MASSIF improvements .. 60

7. References ... 61

Annex A Detailed Mapping of Modules and Interactions vs. Workpackages .. 63

List of Figures

Figure 1 - Roadmap ... 11
Figure 2 - Block diagram of the architecture ... 22
Figure 3 - MASSIF architecture structural view - payload (brown) vs. SIEM (blue)... 25
Figure 4 - Global Information Flow in the MASSIF Architecture ... 29
Figure 5 - GET data flow diagram .. 30
Figure 6 - GET framework enhanced with pre-correlation Security Probes ... 31
Figure 7 - Decision Support and Reaction (DS&R) Agent: Reaction and Adaptation .. 33
Figure 8 - Resilient Event Bus architecture .. 34
Figure 9 - Overview of the Application Service modules and interactions ... 36
Figure 10 - Event Processing: Correlation Engine overview .. 37
Figure 11 - Predictive Security Analyser Component (PSA) .. 38
Figure 12 - Attack Modelling and Security Evaluation Component (AMSEC) ... 40
Figure 13 - Decision Support and Reaction Component (DS&R) ... 42
Figure 14 - Visualization Component .. 45
Figure 15 - Repository architecture .. 46
Figure 16 - Estimated attack vectors to the MASSIF SIEM architecture ... 49
Figure 17 - Architecture of the Resilient Storage .. 54
Figure 18 - Prelude Architecture with distributed Managers ... 58
Figure 19 - Prelude Correlator architecture .. 60

List of Tables

Table 1: Prelude-LML vs. MASSIF GET ... 59

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 11/63

1. Introduction and Scope

1.1 Roadmap

The present document introduces the MASSIF architecture. This document is established in the frame

of MASSIF project but is not related to a specific activity, work package or task. In fact it does not

appear as contractual document of the Annex I of the project. This document is organized as follows:

- The “Introduction and Scope” section provides the roadmap, purpose and document overview. It

also establishes the premises and considerations to build the MASSIF system.

- The “General Overview” section introduces the main architectural blocks and services offered per

block.

- The “Structural View” section provides a macroscopic view of the topology and of the main

components encapsulating the system functions.

- The “Functional View” section introduces the system decomposition into the different major

components. For each component an explanation of its organisation, function, operation and

interaction with other components is given.

- The “Resilience Mechanisms” section focuses on a core non-functional aspect, presenting the

MASSIF resilient framework architecture, revealing the most important aspects on resilience that

will be taken into account in the final solution.

- Finally, the “MASSIF Architecture vs. Existing Systems” section presents a comparison between

MASSIF architecture and the elements that can be found in existing SIEM solutions, namely

OSSIM (Open Source Security Information Management) and Prelude, the exemplary systems

within MASSIF project.

The figure below shows the roadmap for MASSIF architecture, developments and integration tasks.

This indicates what have been done up to the delivery date of the architecture (marked by a vertical

brown line) and what is still left. At the date of submission, there will be some design deliverables

pending that could have an impact on the current architectural design. Therefore this document cannot

be considered as a final version. Additionally, the integration task may require additional changes of

the document. If applicable, these changes will be performed when needed.

Figure 1 - Roadmap

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 12/63

1.2 Rationale

The main goal of the present architecture is to depict a global view of the MASSIF system and of the

solution it intends to achieve. This document serves two purposes.

Firstly, consortium developers will be interested in this documentation to understand the relationships

and dependencies among components within an integrated framework. Such an architecture document

is important for ensuring that partners share a common vision of the production of the project, know

where and with whom they should be prepared to integrate and test, and what interfaces and

information they are consuming, producing and offering. Furthermore, the present document will

serve as a guide for the future tasks of integration, tool adaptation and evaluation.

Secondly, it is intended for an external audience, to explain how the MASSIF solution is structured

and how its components work together, providing a high-level description of different elements

(structural layers, components and functionalities). Furthermore, for complete information, this

document is complemented by the official MASSIF project deliverables found in the project website

(http://www.massif-project.eu/). .

The MASSIF architecture is represented through several views that convey different perspectives,

levels of abstraction and needs. Yet a technical approach has been considered for all of them.

The MASSIF architecture is intended to be as general as possible and does not address any particular

scenario or use-case that could add specific constraints to the common solution. Thus it is worth

pointing out that not every single component is subject to be adapted to each considered scenario, but

we will have different instantiations of the general architecture depending on the given characteristics

of the scenario. Furthermore, the MASSIF architecture, which is open, is intended to be powerful and

generic enough to allow future system integrations, and support different use-cases from the ones

foreseen in this project, by third parties.

The MASSIF architecture document provides an integrated view of the project, cross-cutting the

different activities. In order to give the reader a perspective on the correspondence between

components and activities, such mappings onto the concrete project activities can be found at the end

of this document in the annexes section.

1.3 Understanding the Functional Requirements

Guidelines for the MASSIF framework (and future SIEMs) were developed in [27] , which established

a set of functional, as well as non-functional requirements, to be met by the MASSIF architecture.

Their analysis serves as a guide to the architectural decisions followed. In this section, we start by

understanding the functional requirements:

- The MASSIF system must interface the monitored system. The MASSIF system and the

monitored system will exchange information between each other. There will be an upstream of

security information (events) consisting of both events pushed by the monitored system to the

MASSIF Security Information Event Management (SIEM) and events requested by the MASSIF

SIEM platform from the monitored system. In addition there will be a downstream consisting of

commands and countermeasures from the MASSIF SIEM to the monitored system that would

describe modifications of the monitored system. However the monitored system should be left as

undisturbed as possible, or at least the capabilities required by the MASSIF SIEM system in terms

of monitoring and countermeasures should be fixed and acceptable to the business system owners.

- The MASSIF system must be able to collect security data (events) generated by different kinds of

probes at both the network and the services layer of the monitored system. These probes can be

highly distributed in the monitored system. Since there are many different formats of collected

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 13/63

data (events), these must be translated into an internal format (the MASSIF format) independently

of the source format.

- Similar events should be aggregated in a single event. Conditional filters (ruled-based) should be

able to be applied to different stages of the event collection phase. Standardized event attributes

should be used in conditional constructions used for filtering, action triggers, correlation and

reporting.

- Any event should include a common trusted timestamp reference independently of the security

probe.

- The MASSIF system should inform an appropriate user about possible attacks or abnormal

behaviors. Advanced event processing should be able to filter out unwanted events and generate

alerts on key issues. The alerts should be prioritized to support the decision-taking.

- The system should rely on simulation of attacks and countermeasures to evaluate their possible

impact at the operational level.

- The system should be able to select automatically the most suitable remedial actions. The selected

countermeasures should be transformed into commands applicable to the selected components and

tools. The system should be capable of applying certain countermeasures automatically to protect

assets.

- MASSIF should be able to predict security threats before the occurrence of possible security

incidents, and detect close future violations of security monitoring rules.

- MASSIF system monitoring should be compliant with security policies, rules, models and metrics

defined beforehand by an authorized user. The system should be flexible enough to express a wide

variety of rules and deploy them over a likely distributed environment.

- Security directives, rules and models should be introduced or modified in an easy and dynamic

way. Users can interact with MASSIF components through a Graphical User Interface (GUI). No

information should be lost during the change and internal processes should not be affected during

the change. New security policies, rules, models and metrics must be able to be added without

interrupting the service.

- The system must be able to display in a management GUI (Graphical User Interface) an overview

of all security events that constitute security incidents of interest in real time (the correlated events

and alerts).

- The system must be able to show in a management GUI the list of the original basic events that

triggered the correlation rule and generated the security incident.

- The system must be able to detect the compromise of the event data integrity, either in transit or in

storage, and to indicate this in a management GUI.

- MASSIF components must assure that for internal events (failures detected, user accesses or any

configuration change) in the system a log is produced and stored for internal audit.

- The security information must be stored at different stages of the information management (raw

data, normalized). The system must apply the least persistence principle: it stores only the

information needed to forensic analysis, historical and trend evaluations, recovery actions and

statistics. The received security events should be able to be indexed, compressed and archived.

The search engine should be available to easily access to stored events.

- The system must support data access isolation. The system must allow the management of

different roles and identities (authentication). Only specific operators may be authorized to

perform certain operations, after a proper authorization procedure. The events or the data reported

or generated by the management and control system components (i.e. the measurements

parameters) should not be seen by unauthorized persons. Data records containing information

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 14/63

related to security breaches must be available only to authorized parties, based on existing and

upcoming policies.

- Users’ actions in the system must be logged. The logs must be stored and kept for a certain period

of time (depending on the country’s local regulation and attending to the company’s records and

Information Management procedures) on a secured and dedicated log-service platform.

1.4 Understanding the Non-Functional Requirements

In this section, we review and understand the non-functional requirements laid down in [27] , that is,

those related to, e.g., performance, scalability and mainly, resilience, understood as the capacity to

maintain acceptable levels of security and dependability in harsh operating conditions:

- The system should be flexible enough to integrate a growing number of devices or probes

deployed in the architecture, to operate through diverse administrative domains, maintaining its

performance and timeliness capabilities. Namely:

• at the collection point, the system must be able to handle data peaks; this is, collect data at

the highest rate the probes can produce and maintain the performance capabilities;

• collection, aggregation, normalization, prioritization and correlation of security data

(events) must be performed in (near) real-time.

• archival should be capable of storing and retrieving generated events in a scalable way.

- The system must ensure a reliable flow of information upstream and downstream, as well as

storage, generically preserving integrity and confidentiality, namely:

• event flow protection, from the collection points through their distribution, processing and

archival, maintaining ordering;

• authenticated and unforgeable component status reporting;

• authenticated, unforgeable and non-repudiable (auditable) internal event log production

and storage;

• timely and orderly generation of alarms and countermeasures when needed.

- The system should maintain availability and integrity in face of the occurrence of accidental faults

and of isolated attacks, namely through:

• appropriate mechanisms like redundancy and cryptographic protection;

• flexible and incremental solutions for node resilience, providing for seamless deployment

of necessary functions and protocols.

- In case of severe fault/attack patterns, such as multiple component failures and/or unpredictable

network operation conditions, the whole SIEM infrastructure should achieve high resilience.

Namely:

• data generated by the monitoring devices and tools (sensor data) must keep feeding the

core machinery with acceptable quality vis-avis normal attack/fault situations;

• likewise, in such harsh conditions the system must possess the necessary reconfiguration

ability in order to preserve its crutial functions;

• if necessary, both in communication and processing, activities and information flows may

be resourced by order of criticality, specially the generation of alarms and

countermeasures.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 15/63

We propose to address these requirements by an architecture structure as described below, having the

following main characteristics:

- A topology following the WAN-of-LANs model [17] , and laid down as a logical overlay over the

target system, so as to preserve legacy but allow seamless integration of the monitoring and

monitored systems, possibly across different and wide-scale administrative domains.

- Modular and adaptive structure, achieved by: (i) using modular functions and protocols, to be re-

used by different instantiations of the architecture; (ii) concentrating all functions in configurable

conceptual devices which act as the nodes of the overlay: MASSIF Information Switches (MIS).

The MIS are usually hardware implemented, however there can be software based

implementations, called MASSIF Information Agents (MIA). MIS/MIA construct the MASSIF

architecture “LEGO” in symbiosis with the monitored system.

- Information flow in the overlay implemented as a secure and real-time event bus, modelled

essentially as a producer-consumer SCADA-like (Supervisory Control and Data Acquisition are

distributed systems used in physical infrastructures, often large-scale, e.g., electrical grids, which,

as the name implies, acquire data from all the infrastructure, to feed a real-time dynamic image of

its state, and sometimes produce control decisions, which are materialized by commands back

down) system upstream, with low-bandwidth commands downstream.

- Resilience procurement based on: securing the information flow; making the dissemination

infrastructure itself (event bus) resilient; protecting crucial processing units (MIS, MIA) with

incremental resilience strategies relying on hardware and software based alternatives; and

differentiating between edge-side and core-side configurations.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 16/63

2. General Overview

2.1 Main Architectural Features

This section presents the architecture. It begins by introducing the key options of the architecture and

the system model, in the context, when appropriate, of the requirements laid down in the

Understanding of Requirements sections (1.3 and 1.4). Next, the architecture block diagram and

several service categories are succinctly presented, to be detailed further ahead in the document.

The main desirable characteristics of the SIEM architecture are laid down so as to fulfil the set of

requirements, both functional and non-functional, outlined earlier. They can be summarized into a few

key objectives:

- Scalable data acquisition and collection of huge amounts of events from diverse and

geographically spread nodes.

- Distributed and near real-time aggregation, dissemination and processing of events; alert

generation and incident notification; countermeasure propagation.

- Cross-layer correlation and predictive security monitoring capabilities,

- Integrated and distributed correlation engine implementation alternatives.

- Clear decoupling between the target and SIEM system, for minimal impact on the observed

infrastructure, and adaptation to varying target/SIEM system combinations.

- Resilient operation of the above against faults and attacks of incremental severity, maintaining

availability, integrity and confidentiality.

When reflecting about key non-functional aspects of the MASSIF SIEM architecture, such as

scalability, versatility and resilience, one has to take into account:

- Different interaction realms, such as: multiple and (mainly) unprotected edge facilities; hostile

large-scale communication environment; more protected, centralised or decentralised core

facilities.

- Distinct levels of risk accepted for different instantiations of the architecture in various scenarios,

leading to different levels of resilience as a trade-off for cost and complexity.

- The difficult combination of characteristics such as: security, timeliness, multi-tenancy.

These considerations educated the organisation of the MASSIF architecture.

2.2 System Model

SIEM subsystems operate in heterogeneous and large-scale environments, with varying levels of

exposure to attacks, and for which it is necessary to develop the right computational and resilience

models that represent these characteristics. This is in contrast with settings in which the operational

environment is more homogeneous, allowing a better (and simpler) understanding. The resilient SIEM

architecture will necessarily encompass various nodes and devices, possibly connected through public

networks, some of them operating at the edge of the system and performing data collection. We must

consider that these edge nodes are typically less protected and that the communication environment

might be untrusted. Other nodes, considered core nodes of the SIEM where data is processed, may be

more protected. Nevertheless, they deserve a special care to ensure continuous operation (even if in a

degraded mode).

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 17/63

Therefore, it is necessary to be aware that risk factors may vary and may not be easy to perceive

accurately, requiring that uncertainty is reconciled with security and timeliness requirements. For

example, the different grades of real-time needs, from edge to core, should be considered in the design

of the mechanisms for ensuring continuity and integrity of information flows. Additionally, other

mechanisms should be in place for detecting timing failures when timeliness enforcement is

impossible.

Given the simultaneous need for real-time, security and fault tolerance, this makes the problem of

resilient SIEM operation hard vis-a-vis existing paradigms. Classical intrusion prevention techniques

are certainly an important approach to deal with many threats. However, most defences are dedicated

to generic attacks and will likely be unable to resist to new, previously unknown, targeted attacks.

Therefore, we believe that there is the need for achieving fault and intrusion tolerance in addition to

prevention. The design of solutions based on this paradigm can however only be accomplished with a

good understanding of the fault and synchrony models that are more appropriate to each part of the

architecture.

2.2.1 Fault model

The definition of the fault model is an important aspect upon which the system architecture is

conceived, and component interactions are defined. The fault model conditions the correctness

analysis, both in the value and time domains, and dictates crucial aspects of system configuration, such

as the level of redundancy, the characteristics of the algorithms, and the placement and choice of

components. Failure assumptions of a fault model can typically be organized in two classes: controlled

and arbitrary failure assumptions.

Controlled failure assumptions specify qualitative and quantitative bounds on component failures. This

approach is extremely realistic, since it represents how common systems work under the presence of

accidental faults, where they typically fail in a benign manner (e.g., by crashing), but occasionally

could produce some erroneous value. However, in the presence of a hacker or a malicious person that

is willing to disrupt the system, this approach is not recommended unless perhaps in parts where it can

be enforced with very high probability (protected subsystems, use of trusted components, etc.).

Arbitrary failure assumptions specify no qualitative or quantitative bounds on component failures. In

this context, an arbitrary failure means the capability of affecting a value or a message, at any time,

with whatever syntax and semantics (form and meaning), anywhere or in parts of in the system.

Hybrid failure assumptions combine both kinds of failure assumptions. Generally, they can consist of

allocating different assumptions to different subsets or components of the system. Hybrid models

allow stronger assumptions to be made about parts of the system that can justifiably be assumed to

exhibit fail-controlled behaviour, whilst other parts of the system are still allowed an arbitrary

behaviour. For example, commodity computers with a Trusted Platform Module (TPM), can perform a

limited set of operations in a secure way, even if the rest of the machine is compromised and

controlled by an adversary. Alternatively, consider a computer with virtual machines, where the

hacker can intrude the guest operating systems using normal exploit techniques, but the hypervisor can

be kept correct because the attack surface is much smaller.

Practical systems based on arbitrary or hybrid failure assumptions very often specify quantitative

bounds on component failures, or at least equate tradeoffs between resilience of their solutions and the

number of failures eventually produced. For instance, by employing cryptographic algorithms to

protect the messages, it is possible to prevent attacks on the network that attempt to modify or generate

new messages (because these messages will be recognized as faulty at the receiver, and therefore, will

be discarded). Additionally, since it takes some effort and time to compromise a component, it is

acceptable to assume that over a certain interval at most f components will be intruded by the

adversary, opening the door for the so-called intrusion-tolerant protocols, or protocols which mask up

to a given number of arbitrary failures. Note the power of these protocols: given the assumption that

the hacker can compromise up to f components (f is a parameter, can take any value) during the

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 18/63

execution time, the protocol neutralises any intrusions, and plus does so in an automatic way. That is,

we get rid of the stress of having to completely prevent intrusions: we allow up to f of them, whilst

still preventing security failure, the ultimate goal.

Given the highly distributed nature of SIEM systems, the fault model must consider the networking

environments and the nodes, and must take into account the differentiated level of threats in distinct

parts of the architecture. Therefore, in what follows we define the assumptions on the faults affecting

the flow of information from sensors to the core SIEM systems.

 Edge-side

At the edge layer there will be sensing node devices that produce events (e.g., SYSLOG events), and

then transmit them to event collectors, also at the edge. Devices are exposed to several kinds of

attacks, and in the extreme case, they can be intruded by a hacker. The attacks can cause various forms

of disruption, such as the deletion of specific events or complete removal of the logs, modification of

event data (e.g., change some value) or creation of spurious events. However, although these problems

can be severe, we assume the following of the edge-side components:

- it is typically impossible for an adversary to have enough resources to compromise all devices at

the same time;

- therefore, the system will not fail as a whole, but only gradually – from a global perspective there

will be partial failures leading to a increasingly degraded service, but mechanisms may be sought

to reconfigure and recover the system from this problem;

- with the right monitoring capabilities in place, it should be possible to detect such kind of faults

through correlation at the core layer.

The network that connects payload sensors to event collectors might also fail. This can occur either

accidentally (omissions and/or crash failures), or due to attacks that tamper with the standard protocols

conveying the information. In particular, the event flows can be interrupted or delayed (e.g., by

controlling a router), and individual events can be for instance re-ordered, replayed, or forged. Once

again, it is reasonable to assume that:

- the adversary has limited power, and therefore, that he is only able to disrupt the networking

environment in a partial way;

- mechanisms can be deployed to detect such faults, which can be based on relevant sets of

collected information allowing correlation and fault diagnosis (e.g., time stamps and their validity)

or on structural protocol invariants that may be checked for correctness (e.g., a periodic event

transmission did not arrive).

Collector nodes, on which SIEM services and protocols are executed, might also be the target of

intrusion and their operation might be disrupted. However, since these nodes are managed by the

SIEM solution, we assume:

- it is possible to deploy specific measures to protect the operation of collectors and make them

resilient; in particular, depending on the value of the data being collected, distinct mechanisms can

be implemented in order to achieve different levels of resilience (and typically also cost).

Edge to core communications

The networks through which events are transmitted to the processing nodes are prone to several kinds

of failures. Depending on the configuration of the monitored system, the information might be sent

through a local LAN, and therefore, it is easier to enforce a more controlled behaviour. For

organizations with offices spread across a region, in most cases the communication has to be provided

by some third party telecom operator, which has its own policies regarding for instance security. In

both cases, the communications can fail accidentally due to the crash of some node or messages can be

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 19/63

lost because of network congestion. Attackers can also tamper with the SIEM protocols for conveying

events between the edge and core nodes, causing for example the delay, re-order, or replay of

messages. However, we assume that:

- measures can be taken in the WAN part of the WAN-of-LANs infrastructure typical to the SIEM

system, ensuring desirable properties of end-to-end communications, such as availability and near

real-time, confidentiality and integrity; in particular, path redundancy and overlay, and

cryptographic message protection.

Core-side

The core layer, which includes the processing engine that does correlation on the events and several

other critical core services (see Section 4.3), is classically protected with some sort of devices (e.g., a

firewall) aimed at preventing external attacks. However, under these circumstances, those devices can

also become a target of attack, and most certainly will, within the scope of highly skilled targeted

attacks as expected for critical IT systems and infrastructures – in fact, over the past years, several

vulnerabilities have been described for the most commonly used firewalls [13] , [14] , [15] . This

means that in order to ensure the safe operation of the core services, specific mechanisms will need to

be developed to offer higher levels of resilience to attacks and also to control the in and out flows of

information. We assume the following:

- measures can be taken to ensure a seamless protected end-to-end flow of information from the

protected edge nodes, to protected core nodes which also establish a resilient protection perimeter

to the core services;

- intrusion tolerance through redundancy and diversity may further avoid single points-of-failure in

the presence of both faults and attacks, to selected critical core servers.

Certain core services may require specific mechanisms to ensure correct operation even under

improbable attack scenarios. For example, the historian is responsible for storing collected events and

information in such a way that it can be presented and used in a court of law. In this case, although we

have been considering perimeter defence for the core-side services, it may make sense to consider a

scenario where an inside employee could try to disrupt the historian operation. In consequence, we

assume that:

- selected critical core server intrusion tolerance measures can be extended to enforce unforgeability

and non-repudiation of information storage, in addition to classical strong authentication and

access control policies.

2.2.2 Synchrony model

We briefly address the synchrony model, which refers to assumptions on time and timeliness.

Traditionally, distributed systems have been developed by considering one of the two extreme models

of synchrony. The asynchronous model, also called time-free model, does not make any time-related

or timeliness assumption. On the other extreme, the synchronous model assumes that all system

activities are executed within known temporal bounds, which includes local activities (process

execution) and distributed ones (message transmission). However, many real systems are neither fully

asynchronous nor fully synchronous. Therefore, there exist partially-synchronous and hybrid

synchrony models to cover various intermediate cases, for instance assuming that there are reliable

local clocks or that only some components are temporally predictable.

The environments considered in MASSIF are heterogeneous in several aspects, also with respect to

timeliness. Therefore, it will be wise to consider different synchrony models or different assumptions

depending on the characteristics of the specific environments or networks. Next we discuss the

appropriateness of the several models for MASSIF.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 20/63

An extremely attractive aspect of the asynchronous model is its simplicity. Since no assumptions are

made about the temporal behavior of the system, any activity can take as long as necessary without

compromising correctness. This model would be thus appropriate for the parts of the infrastructure

that are exposed to malicious attacks, which could disturb, delay or deny the execution of operations.

In fact, protocols developed under the asynchronous model are immune to these attacks because they

do not depend on any timeliness assumption and are always correct independently of real delays.

On the other hand, the absence of time notions makes it impossible to satisfy temporal requirements or

enforce some required levels of Quality of Service. To some extent, with asynchronous models there is

a trade-off between safety and the ability to deal with Quality of Service (QoS) requirements. Finally,

it is important to note that in the asynchronous model it is impossible to deterministically solve

agreement problems, such as consensus or total order broadcast, in the presence of failures.

The synchronous model lies on the other side of the synchrony spectrum, in opposition to the

asynchronous model. In synchronous systems both communication delays and processing delays are

known and bounded, the rate of drift of local clocks is also known and bounded, allowing clocks to be

synchronized, performing synchronized actions, and time stamping distributed events. The

synchronous model would seem to be the elected model for the MASSIF subsystems dealing with the

above operations (e.g. near real-time event dissemination and processing).

However, this model suffers from a major drawback, which is related to the lack of coverage of the

synchrony assumptions, be it due to uncertain performance of parts of the system, or in the presence of

time-based attacks, e.g. introducing artificial delays or changing clock or timestamp values, which can

lead to temporal disruptions and ultimately to the violation of safety properties. In summary,

considering the synchronous model when the infrastructure is unpredictable, unreliable or prone to

attacks, is an impediment for achieving resilience and may compromise the correctness of the related

SIEM subsystems.

One approach to escape the problems encountered by developing solutions under the synchronous or

asynchronous models is to consider partial or hybrid synchrony. These models essentially make

additional assumptions that allow achieving some timeliness properties without falling into the

problems caused by the lack of assumption coverage. Essentially, they build on the idea that

synchrony is not a homogeneous property in the time or in the space domains, that is, that the

infrastructure either becomes faster or slower during the execution and thus synchrony comes and goes

(partial), or that some parts may be more predictable and synchronous than other parts (hybrid).

One typical example of the partially-synchronous model assumes that there exist fixed upper bounds

for the relative speeds among processes and for the message delivery delays, but that these bounds are

not known a priori or they will only hold after an unknown time instant. Another well-know example,

the timed asynchronous model, assumes an asynchronous model with the additional assumption that

processes have access to a physical clock with a bounded rate of drift, making it possible to detect

timing failures. One typical example of hybrid synchrony is the TCB model [16] , which assumes an

asynchronous system enhanced with small synchronous components providing the necessary anchor to

real-time.

Hybrid Synchrony in MASSIF

It looks like the adequate model for defining protocols in uncertain and attack-prone environments,

with heterogeneous loci of synchrony, such as the settings we consider in MASSIF, should lie in the

partial or hybrid synchrony group. Both perspectives are interesting, but it should be further observed

that there is an important difference between them. In the former case, one just expects the system to

eventually become synchronous, whereas by exploring the space dimension i.e., acting on the system

structure, one makes the necessary synchronism happen. From a resilience perspective, in the presence

of malicious faults, this difference is definitely crucial, since the time-domain behavior for at least one

part of the system is well-known and can be relied upon despite the attacker power.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 21/63

In the context of MASSIF, a hybrid synchrony model can be explored for instance by assuming that

some nodes (e.g., edge nodes) have trusted components able to deliver trustworthy time stamps. In a

more general sense, and given that hybridization has to be enforced by construction, the overall

distributed system model can be described as a hybrid distributed system model, composed by trusted

components that are added to the baseline legacy, unreliable and intrusion-prone components. In

general, we can assume:

- edge and core layers MASSIF nodes have access to local clocks providing a global and

trustworthy notion of time;

- time stamps can, in turn, be used to infer about both the timeliness of events and about their

ordering.

Some sensors in payload nodes at the edge layer may not have access to local clocks (e.g., physical

sensors). This means that events produced by these nodes cannot be time stamped locally, but only at

the edge MASSIF collector nodes. The accuracy of these time stamps with respect to the real-time

instant at which events were produced will then be dependent on the behavior of the payload-to-

collector network. Whether or not sensors have access to local clocks, it can happen that the produced

time stamps may not be trustworthy, which in practice, leads to a situation similar to the one

mentioned above, made worse with the possibility of malicious time stamp manipulation, at the

sensors or in transit. In any case, we may assume that:

- analysis of the time series of events affected by accidentally caused delays (e.g. variable load), but

correctly time stamped at the collectors, should allow correct reasoning about their semantics, at

higher abstraction levels, filtering out timing errors;

- correlation of the time series of different event flows from the same payload-to-collector network

should allow correct reasoning about their semantics, at higher abstraction levels, masking out

time stamp tampering.

Regarding the WAN part of the networking infrastructure, recall that we do not consider it inside the

defense perimeter. As such, its synchrony properties are bound to be quite uncertain, this made

potentially worse by attacks (e.g., DoS). However, one can still make interesting assumptions that will

be used in the MASSIF WAN communication protocols:

- individual links between any two edge or core nodes have a form of partial synchrony, in the sense

that message transmission latency is bounded, although it is difficult to state the exact bound;

- at deployment time, specific bounds will have to be assumed, which means that the specific link

will alternate between synchronous and asynchronous behavior (respectively when the bound is or

is not met);

- in the presence of overloads or attacks to the network in general, in an interval of time, and given a

sufficient number of alternate links between any two edge or core nodes, there is at least one link

which behaves synchronously.

The assumptions made in the fault and synchrony models described above will dictate the kind of

architectural solutions and protocols that will be developed in MASSIF.

2.3 Architecture Block Diagram

The MASSIF SIEM architecture features several layers: Data layer, Event layer and Application layer.

These layers are superimposed over a Payload layer that we describe for the sake of clarity, but which

is actually formed by the monitored system, external to MASSIF. The Payload layer actually produces

the security information and events to be processed by the several MASSIF layers. Indeed, that

describes reality since, as will be seen later in Section 3, the MASSIF infrastructure is laid down as an

overlay over the monitored system.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 22/63

Figure 2 - Block diagram of the architecture

The main building blocks of the architecture are shown in the block diagram of Figure 2:

- Data layer – event collection, aggregation, normalisation, and pre-correlation

- Event layer – communication; event dissemination (reliable, in time stamp order); protection.

- Application layer – event processing, modelling and simulation (including reasoning and

prediction), decision support and reaction, visualisation, repository.

- The information flow model features high-bandwidth producer-consumer upstream (cyan arrow):

events and other security information are produced by the payload layer, pre-processed by the

Data layer, disseminated by the Event layer to the potentially several elements of the Application

layer, to be finally processed (consumed) by the latter. Low-bandwidth, low-latency channels

provide notifications downstream (as suggested by the purple arrow), which may convey

commands prefiguring reconfigurations of Data layer artefacts, as well as reaction actions

(countermeasures) to these artefacts or even to payload system nodes.

Structurally, the MASSIF architecture is quite simple, as will be seen in detail in Section 3, aiming at

disturbing the monitored system structure (the payload layer) in the least possible way. All MASSIF

Event and Data layer functions are encapsulated in conceptual modules, placed according to the needs,

in strategic places of the payload system. These are the MASSIF SIEM parts subject to a greater deal

of threat. In consequence, they are generally implemented by specialised nodes, which we call

MASSIF Information Switches (MIS), and which actually make information flow around in a reliable

way, being also capable of providing some level of perimeter protection. MIS are themselves protected

against intrusions and tolerant of accidental faults, as will be seen in Section 5.

The set of interconnected MIS form a distributed infrastructural overlay superimposed over the

payload, implementing the Data and Event layers, and some ancillary services described in the next

section. The edge-side interface of this infrastructure is made, as shows, with the monitored system

(Payload layer). The core-side interface is made with the core servers, which acquire the disseminated

information and process it. Core servers host services like the SIEM event processing engine, and

other services like modelling, decision support and reaction, visualisation, repository.

For the architecture in general, incremental levels of resilience may obtained both at micro (local node

architecture) and macroscopic levels (inter-node algorithms), by the definition of tradeoffs between

resilience and cost, complexity or performance of the solutions, as will be discussed in Section 5.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 23/63

2.3.1 Data Services

The aim of the services in the Data layer is to collect the relevant security data from the payload

machinery (i.e. the lower layers devices supplying raw security information and event data). These

devices can be of different forms depending on the application scenario: they may consist of

specialized servers (e.g., a mobile payment application), network management and protection systems

(e.g. an intrusion detection system (IDS) or a firewall), or physical sensors (e.g., water level sensor).

In order to manage and process such heterogeneous data within one common framework, we should

create conditions for event fusion from those different sources. MASSIF events with different formats

and origins and from different application domains, need to undergo a process of abstraction and

coalesce into what we call MASSIF Generic Events, following a common syntactic and semantic

format, which allows events from anywhere in the infrastructure to be fused into the Event Bus, which

performs reliable and ordered event dissemination, and gives services at the Application layer a

convenient way to treat this uniform event flow.

To perform such task the Data layer provides services for the collection of sensory information from

the monitored environment, for the processing and filtering out of non-relevant information, and for

the final normalization of the events. This process transforms the collected events into generic events

that flow through the events layer for their final delivery to the MASSIF SIEM core.

Another key service provided by the data layer of the MASSIF architecture is pre-correlation at the

edge: the objective of pre-correlation is to transfer part of the SIEM intelligence to the edges of the

architecture in order to balance the load on the core processing engines and to reduce the

communication traffic. There are several reasons for having pre-correlation at the edge side of the

network: in the space domain, some specific semantics can be learned from several components in a

same facility intranet of the setting under attack or going to failure; in the time domain, pre-correlation

can help compact successive events related to the same syndrome or root cause. Pre-processing can, in

general, reduce the volume of messages (and data in general) that travel through the infrastructure,

reducing the data load on the Application level services at the core side of the MASSIF architecture,

like the Processing Engines and MIS.

Last but not least, reaction and adaptation services can be provided by agents of the Decision Support

and Reaction application module, to be performed on MASSIF’s smart sensors, or on native sensors

and event sources of the monitored payload machinery. They may serve, for example, for

configuration and reconfiguration of the sensing policies.

2.3.2 Infrastructure Services

In this section we give an overview of the ‘infrastructure services’, as we collectively designate the

services that implement the above-mentioned distributed infrastructural overlay superimposed over the

payload. The infrastructure services include the Event layer services, essentially supporting the

reliable flow of information and also controlling communication between MASSIF nodes. They can

also implement protection, for example of the core services, as will be seen ahead. The following

services are provided, to be detailed later in the document (see Section 4.2):

Communication. The communication service is implemented by protocols running amongst the MIS.

These baseline protocols guarantee that this service is resilient both to accidental and malicious faults.

Additionally, resilience to overload or denial of service (DoS) attacks is achieved by diverse routing.

Generic Events Dissemination. An event bus abstraction (Resilient Event Bus) is implemented over

the communication service, inheriting its resilience, and implementing additional useful properties,

such as time-stamp based ordering and event fusion from any source, since events are converted to a

generic syntactic and semantic format. Decoupling between producers and consumers is also achieved

by the publish-subscribe nature of the event bus. However, given the latency and throughput demands

of the expected event flows from the edge to the core, the publish-subscribe event bus is intended to

push the information in near real-time from the publisher to the subscribers (rather than being of an

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 24/63

asynchronous, persistent nature). The resilience aspects will be discussed with more detail in Section

5.

Protection. When needed, MIS are dual-homed, implementing, besides the SIEM functionality, a

resident protection service akin to an application-level firewall, acting as a bastion providing perimeter

defence. As mentioned earlier, this is especially interesting for core-side specific critical subsystems,

such as the core SIEM event processing engines.

2.3.3 Application Services

The services offered by the application layer are aiming to provide the MASSIF core intelligence

together with the common middleware services required to orchestrate and manage the application

components. Consequently, the application layer will implement new intelligent and effective ways to

derive information on the overall state using the observed events acquired and disseminated by the

above commented layers. Application services can be grouped in the following types of services, to be

detailed later in the document (see Section 4.3):

Event processing. A highly scalable event processing engine is the responsible of processing large

amounts of streaming data in real time, as well as stored events for forensic analysis, with multi-level

abstraction and correlation capabilities based on user-defined rules in a distributed, efficient, elastic

and scalable way.

Modelling and simulation. This group of services will implement new process/attack analysis and

simulation techniques in order to be able dynamically to relate events from different execution levels,

define specific level abstractions, evaluate them with respect to security issues and during runtime

interpret them in context of specific security properties. Two main modelling and analysis

complementary approaches are integrated at this level. On the one hand, the Predictive Security

Analyser (PSA) provides application aware security monitoring capabilities, supporting the near future

application simulation and the prediction of potential security violations. And, on the other hand, the

Attack Modelling and Security Evaluation Component (AMSEC) provides techniques for attack

modelling and simulation, threat analysis and risk evaluation.

Decision support and reaction. The Decision Support and Reaction subsystem develops an

administrative tool allowing the security policy consolidation through the different infrastructure’s

components in an organization, and to configure automatically those components based on selected

countermeasures (by the operator/automatically). In addition to the modelling of systems and

dependencies, this service will include also simulation capabilities that will allow submitting

simulation models and simulation parameters to support quantitative evaluation and comparison of the

attack and counter-measures impact.

Storage and Visualization. In addition to the functional services described above, some middleware

application services are required to agglutinate the application layer components and to interface with

the end user. These middleware services are mainly composed by: the short-term storage and long-

term storage (for events, alerts, vulnerabilities, attacks, configuration, weaknesses, platforms and

countermeasures) and visualization capabilities, allowing real-time security-incident notification,

security status monitoring, analytics and reporting. The visualization tools will also support the

specification of security parameters, queries, rules, policies, procedures and models of the overall

infrastructure.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 25/63

3. Structural View

In this section, the structural model of MASSIF is explained, proposing a topology relating the

payload system (monitored system) with the SIEM system (monitoring system), discussing the

placement of the main components and the network and event dissemination structure.

Facility

Internet

Facility

Facility

Facility

Aux
Services

Aux
Services

Facility

Core

MIS Core
SIEM

Services

Sensor

Edge

MIS

Sensor

MIA

Edge

SIEM

Services

Edge
SIEM

Services

Sensor

MIA

Edge

MIS

Edge
SIEM

Services

Core
SIEM

Services

Core

MIS

Resilient

Event Bus

Generic Events

Edge

MIS

Edge
SIEM

Services

Sensor

Sensor

Sensor

Sensor

Figure 3 - MASSIF architecture structural view - payload (brown) vs. SIEM (blue)

The structure of a MASSIF SIEM system is shown in Figure 3. Let us recapitulate the notion of the

MASSIF SIEM system (blue) actually laying out an infrastructural overlay of the monitored system

(brown). The overlay is implemented by MASSIF Information Switches (MIS).

We model both the payload and the SIEM system interconnection as WAN-of-LANS [17] a useful

construct to represent loosely-coupled wide-area infrastructures, pertaining to the same or different

administrative domains, such as those envisaged as the target scenarios for the MASSIF technology.

They are typically made-up of several facilities sometimes widely separated geographically, whose

local intranets are interconnected through public networks like the Internet, possibly forming virtual

private networks under the protection of secure channels or tunnels. It is easy to decouple the threat

scenarios faced by the WAN part from the LAN parts and, moreover, it is quite simple to consider

distinct levels of trustworthiness for different selected facilities and their LANs. The ’LAN’ concept is

used in a generic way to mean ”short-range”, whose implementation may in fact involve switching or

routing topologies at layers 3-1 (physical to network layer).

We note that the payload system can retain its essential characteristics when the SIEM infrastructure is

superimposed on it, since both work essentially in parallel. The hooks or contact points between both

are clearly materialised by the devices mentioned above: the MASSIF Information Switches (MIS).

An alternative implementation, also shown in the figure, is the MASSIF Information Agent (MIA),

which brings MASSIF intelligence deeper into the payload, implementing MASSIF remote smart

sensors, as we explain in the next sections.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 26/63

3.1 MASSIF Information Switch/Agent

For the sake of taking advantage of the architecture asymmetry, we separate between edge and core

MIS which, though similar in nature, may have different configurations, be treated differently e.g., by

producer-consumer protocols, and/or have different complexity and resilience.

Additionally, MIS being typically implemented as stand-alone machine/devices, for modularity, ease

of configuration, performance and protection reasons (we may think of a MIS as an appliance box

plugged onto the network), we also foresee software implemented versions of the same module, which

we call MASSIF Information Agents (MIA). An MIA is a software appliance residing in edge payload

nodes. The essential difference between the edge-MIS and the MIA depicted in Figure 3, is that the

first is implemented by a ’box’ which resides on the network and can be addressed by any device of

the payload, through standard protocols like TCP/IP. This is the standard situation, where MASSIF

SIEM relies on the payload’s own sensors, and does not involve any modification of the information-

producing devices, which send their log, event or alarm files to the nearest edge-MIS.

On the other hand, the MIA implements a remote smart sensor, that is, a MASSIF compliant sensor

which allows part of the data layer functions to be performed in the payload machinery. This requires

payload nodes to offer a local API to the basic sensing apparatus (syslogs, event services, etc.), and be

open to installing external software modules, but apart from that, it should require minimal host

modifications, allowing swift integration of MASSIF functionality into non-closed payload nodes.

3.2 Event Bus

MASSIF Information Switches also play an important role as generic communication servers, namely

implementing the Resilient Event Bus, REB. The collection of MIS devices run the secure, reliable

and real-time communication protocols needed to implement the Resilient Event Bus abstraction.

These protocols can use essentially the same kind of substrate of communication as the payload

system. More secluded architectures for highly critical applications can nevertheless be foreseen, with

dedicated secure circuits or virtual private networks to implement the REB. Though this component

will henceforth be designated Resilient Event Bus, the resilience aspects will be discussed later in

Section 5.3, whereas here we introduce the functional aspects.

The Resilient Event Bus (REB) is mainly in charge of disseminating the events collected by the edge-

MIS/MIA, after being pre-processed by the Data services implemented in the same edge-MIS/MIA, to

the core-side Application layer services. The trustworthy MIS-to-MIS interconnection secures these

information flows. The REB delivers the information to the core-MIS, which communicate reliably

with the core engines, at the same time protecting them from external attacks, acting pretty much as a

sophisticated firewall.

The REB should encompass both events created by the periphery and events generated from within the

SIEM machinery. As shown in Figure 3, events are published into the event bus, mainly by the edge-

MIS, to be delivered to the core-MIS subscribers. But this does not preclude edge-MIS from

subscribing, or core-MIS from publishing events. In fact, that happens each time there are notifications

or commands sent from the core services down to the edge of the infrastructure.

The flow from edge to core, as the figure suggests, is expected to have much greater bandwidth than

the flow in the opposite direction, used to carry commands in reaction to the analysis performed by the

correlation engines and other application services. In fact, given the latency and throughput demands

of the expected event flows from the edge to the core, the event will push the information in near real-

time from the publisher to the core entities having subscribed to it, the Event Processing Engine being

the main subscriber.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 27/63

3.3 Edge-side Services

In the MASSIF model, we consider that edge-side monitored system payload devices actually have

their own basic sensory apparatus in place, be them raw event sources/emitters --- e.g. logs --- or

native sensors --- purposely made metrology artefacts that measure Key Performance Indicators

(KPIs) or alarm conditions of the payload systems. These are normally supplied with the monitored

systems, even if they are extensions to basic configurations. We will generally call (monitored system)

sensors to whatever is in place to acquire the raw security information and event data from the

payload. The edge-MIS then act as collectors of information from the payload sensing apparatus, at

the Edge-side Infrastructure Interface. Each edge-MIS is then in charge of implementing part or all of

the Data services foreseen in MASSIF, which perform some sophisticated data processing. Namely, an

edge-MIS should do at least event collection. However, it will normally implement other services as

well, namely the normalization of the event formats and contents, aggregation of several events, and

even some local pre-processing and correlation. Likewise it may also host agents capable of

performing reaction and adaptation commands. These services will be detailed in Section 4.1.

Generally speaking, we talk of MASSIF smart sensors, to address the edge-MIS data modules that

acquire and process the basic information coming from payload sensors. This duality is shown in

Figure 3.

An important alternative is brought into play by MASSIF Information Agents (MIA), described

earlier. Whereas edge-MIS rely on the payload sensors and are confined to their limitations, some of

functionality, some caused by faults or attacks (see Section 2.2), MIA introduce the notion of remote

smart sensor, with two key advantages: part of the Data services may be performed in the MIA, in

symbiosis with the local sensory apparatus, improving the quality of information and event

acquisition. Actually, Data services can be split as wished between the MIA and the edge-MIS to

which it connects (see Figure 3).

The additional integration effort of MIA into selected existing payload devices may well be justified

for nodes offering reasons for local MASSIF intelligence: critical nodes such as core routers; nodes

that are themselves very rich in information and event sources. As a matter of fact, certain devices,

such as firewalls or IDS (Intrusion Detection Systems) are so rich and sophisticated in the information

they provide, that it makes sense to incur the cost of porting (some of) the MIS services to a software

module compliant with the architecture of the former. Another reason for resorting to an MIA is when

a given payload device, albeit important, does not have incorporated sensors (i.e., lacks software

modules capable of generating syslogs, events, etc. in a format exportable or understandable to the

MIS). This will be rare in IT, but may happen in control devices such as used in critical

infrastructures. A slightly higher integration effort may be well justified for critical devices lacking

sensing capability.

In any case, one of the advantages is the capability of pre-processing and filtering the information, and

even tuning those firewall or IDS devices in special ways, in response to commands issued by the

Application layer. Another advantage of the MIA approach is guaranteeing a more trustworthy

information and event feed from/to that particular payload node, not subject to the communication

faults and attacks discussed in Section 2.2, since MIA-MIS interconnection is made through MASSIF

reliable communication protocols.

3.4 Core-side Services

Core SIEM services are for example the event processing engine, and other services like modelling,

decision support and reaction, visualisation, repository. The core application services process the

information and events arriving from the edge, performing complex event analysis, normally using the

stream data processing model, trying to find correlations in the data and detect anomalies (failures,

intrusions). Besides correlation, data is also archived in resilient storage, in order to allow ulterior

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 28/63

forensic analysis. Reaction modules may generate commands to modify the sensing and collecting

conditions, or even modify protection or filtering apparatus like firewalls or IDS, namely those

mediated by MIA.

Auxiliary services are any non-critical services that are not part of MASSIF, but may be of interest to

the operation of MASSIF as a whole (long-term archival, email, web apps, reporting, printing,

etc.).The application services are bound to reside in data centres either of the monitored system’s

organisation (running its own MASSIF SIEM system) or of a third party organisation (in the case of

an outsourced MASSIF SIEM managed service). Remember that MASSIF is supposed to operate

through diverse administrative domains, and this is one of the reasons.

As Figure 3 suggests, these core-side critical subsystems (Core SIEM services), for example core

SIEM event processing engines, are supposed to be housed in perimeter-protected LANs connected to

the MASSIF WAN-of-LANs. As mentioned earlier, dual-homed MIS can implement this protection:

as depicted in the figure, such core services lie behind a MIS, which filters all access, both from the

network and from the facility intranet. In fact, with regard to the latter, note that the Auxiliary

services, which belong to the payload, can only interact with the core services via a MIS.

Structurally, SIEM event processing engines deserve special attention, since they are the most data

intensive of all core-side, application services. SIEM engines can be integrated or distributed, and its

functions can be centralized or decentralised. The MASSIF architecture actually supports any of these

variants of SIEM engine implementations, due to the modularity provided by the MIS concept. The

content-based information dissemination characteristic yielded by the publish-subscribe paradigm

offers an easy way for core-MIS resident services to manage issues like fragmentation and

dispatching, parallelism and replication, depending on the way SIEM engines are for example

distributed or replicated by different facilities or data centres.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 29/63

4. Functional View

The global information flow in the MASSIF architecture is depicted in Figure 4. Information is

captured at the edges, as shown earlier in the structural view of the system (Figure 3), processed in the

Generic Event Translation modules which perform event collection, aggregation and normalisation,

and then disseminated to the application services. The Event Processing module (Complex Event

Processing Engine, CEP), performs correlation amongst related events from the raw event flow

coming from the periphery and stores both raw events and correlated events in the Repository. Note

that event processing is enhanced by pre-correlation that already happens in the Generic Event

Translation module. The Repository allows indirect communication with the other application

modules. The Model Management services perform modelling and simulation, and further generate

additional syndromes: threat models and security alerts, which are fed back to the repository. Finally,

the Decision Support and Reaction (DS&R) service analyses both the original event digests and the

threat model digests and security alerts, and triggers reaction and adaptation measures, translated for

example in modified policies, which are sent back to the edge, to the DS&R agents, and affect the

sensing and periphery event processing modules.

S
e

cu
rity

 In
fo

rm
a

tio
n

 a
n

d
 Ev

e
n

t P
ro

d
u

ctio
n

 (P
a

y
lo

a
d

)

M
o

n
ito

re
d

 sy
ste

m
 P

o
licy

 E
n

fo
rce

m
e

n
t P

o
in

ts

E
v

e
n

ts
S

o
u

rce
E

v
e

n
ts

S
o

u
rce

E
v

e
n

ts

S
o

u
rce

E
v

e
n

ts
S

o
u

rce

Reaction &

Adaptation

Policies and

Commands
Sensing

Policies and

Commands

Generic

Event

Translation

G
e

n
e

ric E
v

e
n

ts D
isse

m
in

a
tio

n
 (E

v
e

n
t B

u
s)

Event

Processing

Correlated

& Raw

Events
Events

& Alerts

PSA

Security Alerts

AMSEC

Threat Models

Digests

Event Digests

PSA

Security Alerts

AMSEC

Threat Models

Digests

Reaction &

Adaptation

Policies and

Commands
DS&R

PyOrBAC

Agent

Sensing

Policies and

Commands

Model

Management

Decision

Support

& Reaction

R
e

p
o

sito
ry

Events

Raw &

Pre-correlated

Events

Raw &

Pre-correlated

Events

Figure 4 - Global Information Flow in the MASSIF Architecture

In the following sections, the functional aspects of each service module will be explained in detail.

4.1 Data Services

4.1.1 Event Collection, Aggregation and Normalisation

The main purpose of the MASSIF data services is to deliver security information flows to the MASSIF

core. In order to do so, this layer must provide the functionalities for the collection, aggregation and

normalization of the events generated by the payload machinery and use the MASSIF Infrastructure

level services to provide the relevant security data to MASSIF applications by exploiting the services

offered by the MASSIF resilient framework. When required (e.g., in outsourced SIEM systems), this

is also the place in the architecture to perform anonymisation.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 30/63

The Data layer must be able to handle a wide set of security-related data formats, generated by the

security event sources deployed in the MASSIF use cases. Thus it provides the functionalities for the

translation from these data formats to the unified MASSIF generic event format which is tractable by

the MASSIF applications. It also provides the functionalities for time-stamping and disseminating

translated events through the MASSIF infrastructure to the MASSIF Application layer, using the

Resilient Event Bus.

Figure 5 - GET data flow diagram

In order to perform these tasks, the data layer includes the following three functionalities:

- Collection of raw events from the Payload Machinery. All the raw events produced by the security

related sensors in the monitored systems are delivered to the data layer, which allows the security

data to enter the MASSIF SIEM platform (see the block diagram in Figure 2). Raw events are

collected from the data sources, which may pertain to different layers of abstraction and follow

different formats, and they are transferred to the data layer in a textual form through the

appropriate protocols (e.g., syslog). This diversity is suggested by the colour coding of the

different flows from the Dispatcher.

- Aggregation of closely related events. In some cases the same real world event can generate many

redundant computer events, which carry few or no additional information. In these cases events

need to be aggregated before being delivered to the upper levels, in order to avoid repeated

notifications and also to prevent flood of events that may clutter the dissemination and processing

elements of the MASSIF framework;

- Normalisation of all events and information to the MASSIF generic event format. The MASSIF

SIEM is called to deal with highly heterogeneous types of events and information. The collected

events go through a normalisation process that converts them to a common and generic

representation format hiding this heterogeneity (this normalisation is suggested by the uniform

colour of the flows converging on the Events Handler after processing). In fact, any event message

exchanged between MASSIF modules follows this common format. This allows the SIEM

platform to transparently manage all the different data, whatever its source.

In order to implement these translation functionalities, the abovementioned data layer services are

organised in a framework for event translation named Generic Event Translation (GET), whose main

components are represented in Figure 5. For the extraction of the relevant data fields from the different

types of events, the GET framework relies on a component called Adaptable Parser [8] , [9] . GET is a

dynamically reconfigurable framework that allows collection and identification of the events from

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 31/63

different sources. It acts as wrapper for the functionalities of the adaptable parsers in order to make

their usage and management more efficient.

The translation process within the GET framework is organized as follows: the events are collected

from their source, the input format is recognized, the event is parsed by the adaptable parsers, the

relevant data from the event is converted to the MASSIF event format, and finally the MASSIF event

is time-stamped and forwarded to application layer, through the event layer generic events

dissemination services. The GET framework has a modular architecture, whose operation is

coordinated by the GET Manager.

The entry point for the events generated by the payload machineries is the Event Dispatcher. The

Dispatcher connects events from different sources and formats to the appropriate adaptable parser,

through a GET Access Point (GAP). The GET Manager creates GAP instances on demand, to handle

new sources. The Manager also supervises the dynamic activation, deactivation, and update of the

Adaptable Parsers, which implement the actual grammar-based parsing functions. After parsing and

extracting the relevant information from a specific event format, the MASSIF Events Handler (MEH)

deals with the final conversion into the MASSIF Generic Event format, and the dispatching to the

event layer, so that events can be sent to the application layer, where the SIEM core services reside.

4.1.2 Pre-correlation

The MASSIF SIEM architecture features early correlation mechanisms at the periphery, on the edge

side, which we call pre-correlation. We believe that it makes sense to try and recognize security-

relevant patterns which may be symptoms of malicious or anomalous activities perpetrated over a zone

of the target distributed system --- both on events belonging to the same architectural layer (intra-layer

correlation) and on events belonging to distinct architectural layers (cross-layer correlation), but taking

advantage of the natural topological affinity of events gathered in a same zone or subsystem of the

target (e.g., a VLAN, a DMZ, etc.).

Figure 6 - GET framework enhanced with pre-correlation Security Probes

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 32/63

The component in charge of pre-correlation is called a Security Probe (SP). A Security Probe is

capable of including new event classification rules and using them in order to improve the accuracy of

the detection function. SP modules are deployed within a Generic Event Translation (GET) framework

instantiation, as shown in Figure 6 and, as such, they reside in edge-side MASSIF Information

Switches (MIS). There may be more than one SP within the same GET framework. Besides processing

events to be directly disseminated to the upper layers, the GET framework performs the necessary

upstream data processing for the SPs. A Security Probe is selectively fed by the output of parser

components of the GET framework. Besides the generic adaptable parsers, there may be fixed parsers

specially designed to fit the SP needs. The parser outputs may be configured to go exclusively to the

SP or to the application layer correlation engines, or to both.

SPs, upon detection of positive correlations, act by generating alert events, which are created directly

in the MASSIF generic event format, so that no further translation process is required. These alert

events are sent to the application layer through the MASSIF Event Handler of the GET framework.

These alert messages receive a trusted timestamp, so that they can be meaningfully correlated with

other events, e.g., in the core application layer services. As a matter of fact, a typical consumer of the

alert messages is the MASSIF Processing Engine. The Security Probe is essentially an event detector.

As shown in Figure 6, the Security Probe uses the information extracted by the parsers to identify

anomalous service events or patterns: the event detector’s engine is based on Finite State Machine

modules built from predefined service rules.

In order to achieve such objective, a dedicated software module, the Security Event Tracker, is in

charge of identifying specific events occurring in the infrastructure based on the information extracted

by the Data Parsers. For example in case of service pattern recognition, the normal infrastructure

behaviour is modeled through the Finite State Machines (FSMs). Whenever an unauthorized transition

from one service status to another one is detected by the Security Event Tracker, an alert is generated.

It’s worth highlighting here the main differences between the GET and the combined GET and SP

event flows. The GET framework agnostically translates the input generated by the monitoring

sensors, integrating at run-time new and heterogeneous event sources, by dynamically and seamlessly

reconfiguring and deploying adaptable parsers. It is also in charge of performing a normalization

process of the pre-existing event sources. The Security Probes (SP) have been conceived to add some

intelligence to the information flow generated by GET, by spotting and reporting anomalous events

based on predefined sets of security patterns expressed by means of Finite State Machine rules.

Moreover its output messages do not require any additional normalisation.

4.1.3 Reaction and Adaptation

As discussed in Section 4.3.3 ahead, the Decision Support and Reaction (DS&R) application module

may issue decisions about pending threats, part of which imply sending down to the edge, the

necessary reaction and adaptation commands, to be effected on MASSIF smart sensors, or on native

sensors and event sources of the monitored payload machinery.

These hooks for configuration and reconfiguration of the sensing policies are called Policy

Enforcement Points (PEP), and they are implemented by a set of DS&R agents, as suggested in Figure

7, which ensure the configuration of the associated components’ policies. So, every time a new

component needs to be managed, a specific agent will be created based on the component’s need.

DS&R agents aim both at reconfiguring Policy Enforcement Points (PEP) components and at

providing assistance to manage contextual information that is not natively handled by the PEP. PEP is

used herein as a generic term for components within an IT infrastructure that act as gateways for

requests, and can alter them; examples of such components are firewalls, intrusion detection sensors,

anti-virus, web application gateway, LDAP directories or radius servers. The DS&R agent subscribes

to instructions from the DS&R application module, published in the form of MASSIF generic events,

as depicted in Figure 7. Then, it takes the request and configures the PEP according with the policies

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 33/63

specified. The DS&R agent is able to detect context changes and define the new set of policies, in

order to apply the required configurations.

Figure 7 - Decision Support and Reaction (DS&R) Agent: Reaction and Adaptation

Decision Support and Reaction agent architecture

The DS&R agent resides either on an edge-MIS or on a MIA co-located with payload components. Its

goal is to execute the policies dictated by the core DS&R module, adapting the monitored system's

security policy (and thus its configuration) to the detected threats. It will implement any functions

needed to adapt to new circumstances or react to threats by reconfiguring the sensing apparatus and

payload system’s security policy.

The edge-MIS solution applies when the Policy Enforcement Points (PEP) is a closed environment

and has a channel with sufficient QoS to the edge-MIS. The MIA solution applies in the case where it

makes sense to have local intelligence and/or it is made possible by those PEP component's openness.

In the edge-MIS installation, the DS&R agent: (1) effects new configurations on MIS-local smart

sensors (receiving directly from remote payload native sensors or event emitters); or (2) it can

remotely effect the configuration of payload components PEP (the very native sensors or event

sources/emitters). In the MIA installation, the DS&R agent: (3) effects new configurations on smart

sensors local to the MIA (receiving locally from local payload native sensors or event emitters); or (4)

locally effects the configuration of payload components PEP (the very native sensors or event

sources/emitters).

The DS&R agent is actually composed of two sub-components, the configuration agent and the

context monitor. Both components are hosted together. The configuration agent receives information

from three different sources: the PyOrBAC engine of the core DS&R module
2
, in order to create

organizations and subjects; the context monitor, in order to implement the policies; the administrator,

through an API that allows the user to set the mapping information between the PyOrBAC and the

PEP elements. This agent translates the policies from the PyOrBAC format to the set of instructions

needed to apply and execute the rules. The context monitor is used to manage all the contexts defined

in PyOrBAC. It performs this by monitoring the environment to check if the context has changed, in

such a case, it informs the configuration agent of the new condition in order to apply the

corresponding policy.

2
 PyOrBAC is an OrBAC-based security policy engine implemented in Python, which is the core of the DS&R module, to be

discussed further in Section 4.3.3.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 34/63

Interaction with other MASSIF components

The Generic Event Translation Framework consolidates the MASSIF data services components. It

stands in between the security information and event sources of the payload machinery and the

MASSIF infrastructure services performing generic events dissemination (i.e., the event layer),

feeding the MASSIF application layer. The GET framework is normally deployed in edge-side

MASSIF Information Switches (MIS).

A subset of the translation capabilities of the framework can also be made available in MASSIF

Information Agents (MIA). MIAs are smart security sensors that are deployed together with important

sources of security events. As these smart sensors are specifically developed for the integration of

these sources in MASSIF, local translation capabilities make it easier to plug them into the MASSIF

framework.

4.2 Infrastructure Services

4.2.1 Generic Events Dissemination

In this section we deal with the functional aspects of the generic events dissemination service,

implemented by the Resilient Event Bus (REB). As explained earlier, the resilience aspects will be

discussed later in Section 5.3, whereas here we focus on the functional aspects.

The REB performs generic event dissemination towards the services in the core-side of the

infrastructure, namely the event processing engine. The bulk of the traffic will be in this direction,

from the edges to the core, but in some cases it might be necessary to relay back commands. For

example, when the Model Management service forms a suspicion that an attack might be in progress,

the Decision Support and Reaction service, upon processing this alert, might instruct its agents (see

Sections 4.3.3 and 4.1.3) in the edge MIS and/or payload sensors to start collecting more detailed

information about the status of the network and specific nodes.

Network Support

Communication

Services

Communication

Services

Communication

Services

Event Bus

Application

Service

Application

Service Application

Service

Publish
Subscribe

Figure 8 - Resilient Event Bus architecture

Figure 8 offers a detailed view of the Resilient Event Bus internal architecture, making its

implementation clearer. REB aims at providing a ‘generic events’ abstraction where events published

from different origins coalesce on the layer, are temporally ordered, and made available to the

subscribers.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 35/63

One of the key factors to achieve this goal is that events follow a common syntax and semantics,

whatever their origin, the MASSIF generic event format mentioned earlier. Another key factor is the

availability of trusted timestamping, i.e., that event timestamps must be globally meaningful, that is,

clocks at the relevant end-points must be globally synchronised to an adequate precision, and

trustworthy. A third and final key factor is that events are treated seamlessly, whatever their origin or

destination: (i) events produced or consumed by the payload machinery (outgoing events and

information; incoming commands); or (ii) events produced or consumed by the SIEM machinery

(incoming events and information; outgoing commands).

The unusual L-shaped structure of the REB architecture guarantees these objectives, by making a

seamless connection between the external system, the monitored payload machinery, on one leg, and

the internal MASSIF SIEM system, on the other leg.

Recall that the payload machinery contains the raw security information and event sources. This alien

sensory information of diverse origins is captured and undergoes a translation, normalizing it into

generic events understood by the MASSIF SIEM system, which are fed into the Resilient Event Bus.

On the other hand, Application services are also capable of producing native MASSIF generic events,

which for example convey notifications or commands, also fed to the REB. Finally, pre-correlation

modules at the edge are also capable of synthesizing events to be fed to the REB. These events of

several natures and origins coalesce on the bus and are then published to eventual subscribers

(actually, MIS nodes).

The event bus layer publishes events following a common syntax and semantics, whatever their origin

and direction, and following pre-defined delivery reliability and causal and temporal ordering

properties. It is bidirectional but asymmetric: upstream, it conveys high-throughput data, sourced by

edge-MIS and sinked by core-MIS; downstream, it conveys low-throughput commands, sourced by

core-MIS and sinked by core and/or edge-MIS. Some of these events may possibly undergo a reverse

translation and be passed-on to environment machinery, e.g. MIA, by the subscribing edge-MIS. This

is the way we foresee commands or notifications getting ultimately to payload devices in a uniform

way.

Mapping the specific REB architecture onto the MASSIF layers, Translation services map onto some

of the Data layer services, such as collection, aggregation and normalisation. In consequence, this part

of the REB functionality will be implemented in MIS (general case), in MIA (smart sensor case), or

split between both. The Communication services are concerned with the MASSIF protocols

responsible for the actual propagation of events via the regular Network Support system (the WAN-of-

LANS mesh), ensuring they reliably arrive at all intended destinations. This part of the REB

functionality will be implemented in MIS. Ordering and synchronisation mechanisms create the event

bus abstraction in all MIS units for the intended subscribers. The event bus obviously maps onto the

Event layer of the general MASSIF diagram.

4.2.2 Secure Communication

We saw that the set of MIS form the distributed infrastructural overlay superimposed over the payload.

This overlay is actually implemented by a dedicated resilient communication service. The

communication service is implemented by protocols running amongst the MIS. These baseline

protocols guarantee that this service is resilient both to accidental and malicious (or Byzantine) faults,

given the fault/attack model outlined for MASSIF (see Section 2.2). Additionally, they establish

concurrent routes between MIS, to overcome severe threat scenarios like overload or denial of service

(DoS), by achieving routing resilience. Communication protocols can benefit from the foreseen

asymmetry between upstream and downstream communication, in terms of sinked and sourced

throughput, for more efficient solutions. The combination of security and real-time requirements

however makes the implementation of this service a challenging objective. The communication

service also serves additional purposes: to send down-stream commands; to effect control

communications between peer MIS.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 36/63

4.3 Application Services

This section describes the several Application Service modules. Figure 9 gives a high-level view of the

logical interactions between these modules, which will be detailed below.

Figure 9 - Overview of the Application Service modules and interactions

The application layer services use the event dissemination infrastructure to get event information from

the edge, and also to send back events (e.g. reaction and reconfiguration) to the edge. Once inside the

Application Layer, application services rely on the event processing engine to process all incoming

events and generate alarms. Input and output events are also persisted in the event repository, part of

the general repository module depicted in Figure 9, as an alternative means for application service

components to manipulate events, as well as to enable historical forensic analysis of events. Therefore,

the different application components may choose between using a streaming interface and/or the data

store API to get access to events. Whenever required, communication between application modules

can also be made through other direct communication protocols suited for the purpose. The current

architecture configuration favours indirect communication through the repository as depicted in Figure

9.

4.3.1 Event Processing

Processing of events in the MASSIF SIEM is performed by a highly-scalable, elastic correlation

engine [1] . The latter is materialized as a parallel Complex Event Processing (CEP) system that is

capable of (i) aggregating the computing power of a large cluster to process massive amounts of

events per second and (ii) adjusting the number of allocated resources to the real input load.

The behavior of the engine can be extensively customized through CEP queries (CEP queries are

transparently generated from user-defined standard SIEM directives, designed e.g., with OSSIM) that

define how to abstract, transform, aggregate and correlate input events. A CEP query is composed of a

number of operators, defined in [2] .

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 37/63

G
e

n
e

ri
c

Ev
e

n
t

D
is

se
m

in
a

ti
o

n

Processing

Instance

Idle

Instance

Elastic

Manager

Query

Compiler /

Deployer

R
e

p
o

sito
ry

Visualization

Raw &

Pre-

correlated

Events

Security Alerts

Configuration

Rules

CEP

Connectors

Model Management

Raw &

Correlated

Events

Resource

Manager

Figure 10 - Event Processing: Correlation Engine overview

The internal architecture of the engine and its interaction with the other components of the MASSIF

SIEM are shown in Figure 10. The engine is characterized by a number of processing instances

arranged in a sequence of subclusters. All processing instances of a subcluster run the same portion of

the CEP query, called subquery (efficient techniques to partition a query into subqueries are discussed

in [1]), receiving input events from the previous subcluster and feeding output events to the following

subcluster. The first subcluster of the sequence receives input events directly from the Resilient Event

Bus, with the use of the CEP connectors. Output events of the last subcluster are available both

through a streaming API to other application modules and to the MASSIF Repository. Partial results

from intermediate subclusters are also available.

The Elastic Manager monitors the status of each processing instance and adjusts the size of a

subcluster (e.g., adding or removing instances) according to its current input load. Adding or

decommissioning processing instances requires the Elastic Manager to interact with the Resource

Manager, which keeps a pool of available instances. At any time, the Elastic Manager can also re-

distribute the load across the processing instances currently allocated to the subcluster. Efficient

techniques to add/remove processing instances or to re-distribute the input load are discussed in [3] .

Finally, the Query Compiler/Deployer receives a standard SIEM directive as input, either from the

visualization component interface or the Model Management component, translates it to a CEP query,

partitions it into subqueries and deploys each subquery to a subcluster.

Interaction with other MASSIF components

Input events come from the edge services through the resilient event bus and are injected into the

correlation engine via CEP connectors. The output of the CEP queries is consumed by the modelling,

reaction, and visualization services. Currently, they can be consumed via the event API. However, an

alternative method will be provided to access the data by storing them in the repository based on a

highly scalable cloud data store.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 38/63

4.3.2 Model Management

The Model Management block is composed of two modules, described below: the Predictive Security

Analyser (PSA), and the Attack Modeling and Security Evaluation Component (AMSEC).

Predictive Security Analyser

The Predictive Security Analyser (PSA) provides advanced, application aware security monitoring

capabilities to the MASSIF SIEM. Specifically, it supports close-future process behavior simulation

and prediction of possible security violations. Its block diagram is depicted in Figure 11. The quality

of the performed analysis strongly depends on the quality and granularity of the process description as

well as on the appropriate security event specifications.

E
v

e
n

t
P

ro
ce

ss
in

g

PSA Modeller

Components

Security

Event

Modeller

Process

Modeller

Predictive Security Analyzer

PSA Core

Security/

Process

Model

Interface

Se
cu

rity

M
o

d
e

l
P

ro
ce

ss

M
o

d
e

l

MASSIF Event

Schemas (XSD)

C
o

n
fi

g
u

ra
ti

o
n

Security Model / Attack Model / Process Model / Process Specification

PSA Security Alerts

MASSIF Events /

Alerts

Simulation /

Analysis Results

Repository

Visualisation/GUI

Event

Type

Interface

Event

Interface

Security

Alarm

Interface

Visualization

Interface

Figure 11 - Predictive Security Analyser Component (PSA)

Security event modeller and process modeller. Prior to the start of the engine, the process description

and security goals/events will be transformed into PSA understandable models (Asynchronous Product

Automata (APA)), which are going to be used for the continuous real-time analysis and close-future

simulation. This will be done in the security event modeller and the process modeller components.

They will communicate with the model repository, which contains the attack models of the AMSEC

tool and the previous models composed by the modellers. The security model and process model

interfaces will provide access to the repository for the PSA engine. The interpreted models will be

imported into the PSA in the initialization phase.

The PSA modeller components support the security requirements elicitation, the specification of a

simulation model, and the development of monitoring rules (CEP queries). High level security goals,

security requirements, monitoring rules, the developed specifications and the relations between them

will be stored in the MASSIF repository. These relations will enable correlation of PSA alarms with

high level security goals and security requirements. Furthermore, asset descriptions and event formats,

which are stored in the Repository, are needed in order to associate asset information with events

received and alarms transmitted by the PSA via the repository.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 39/63

Interaction with other MASSIF components

In order to assure the seamless interaction with other components of the MASSIF SIEM, the PSA

supports a number of external interfaces.

- PSA interaction with the repository

The MASSIF repository is the main data source and information exchange interface between the PSA

and other MASSIF components.

The event type interface is a point of interaction between the PSA and the event type registry. This

registry manages a database of XSD event schemas, which defines the format and the content of all

events processed by the PSA. The event schema database is provided by the MASSIF repository. The

event interface communicates through the MASSIF repository with the event processing engine. It will

feed the PSA (low-/high-level) events and alerts. The seamless interpretation of these events within

the engine relies on the content of the database of XSD event schemas in the MASSIF repository.

The security alarm interface delivers the identified current or close-future security violations to the

MASSIF repository in the form of PSA alarms. This notifies other MASSIF components about

detected critical situations in order to enable immediate/proactive actions against the upcoming

security threats based on the provided information.

Other MASSIF components, such as AMSEC, deliver their results via the repository to the PSA. This

will enable the PSA to incorporate these results into the simulation process and to adapt the simulation

strategy.

- PSA interaction with the event processing component

Correlation rules identified by the PSA modeller components have to be delivered to the Event

Processing component in order to enable the activation of the developed monitoring rules with events

delivered by the generic event dissemination.

- PSA interaction with the visualization interface

Results of the multi-level predictive security monitoring performed by the PSA, such as current or

close-future security violations, can be presented to the security officer through the MASSIF

visualization component in order to facilitate decision making and choice of countermeasures.

Attack Modeling and Security Evaluation

The Attack Modeling and Security Evaluation Component (AMSEC) is intended to complement the

direct analysis functionality of the SIEM system, by providing the architecture with the capability of

attack modeling and security evaluation [6] .

The main inputs are: configuration of the computer network (or the system), security policy for the

computer network (or the system) determining a set of permissions or policy rules, event and alerts in

the computer network (or the system), external databases (DBs) of vulnerabilities, attacks, platform,

etc., possible malefactor profiles (as a set of malefactor characteristics), required values of security

metrics (as a set of requirements to security).

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 40/63

Figure 12 - Attack Modelling and Security Evaluation Component (AMSEC)

The main results are as follows: vulnerabilities detected; possible routes (graphs) of attacks and attack

goals; payload internal dependencies; bottlenecks (“weak places”) in network security; adjusted attack

trees based on changes in the network; predictions of the intruder’s next steps taking into account the

current situation; security metrics, which can be used for general security level evaluation of computer

network (system) and its components; attack and countermeasures impacts; guidelines for increasing

the security level and solutions based on security measures/policies/tools.

The AMSEC operates in two main modes [6] : (1) Design time (or configuration) stage, where

AMSEC is used for design and initial analysis of the network analyzed (or the system under

protection). It is a non real-time mode; (2) Exploitation stage, where AMSEC is used for real-time or

near real-time operation in the framework of the SIEM system.

The general architecture of AMSEC and its interaction with other components of MASSIF SIEM are

shown in Figure 12. Connections, depicted in the figure, show the direction of interactions between

different components.

- The Data repository updater downloads the open databases of vulnerabilities, attacks,

configuration, weaknesses, platforms, and countermeasures from the external environment

(sending requests to external databases for updates and communicating with data sources).

- The Specification generator (SG) converts the information about network events, configuration

and security policy, from other MASSIF SIEM components or from users, into an internal

representation.

- The Malefactor modeler (MM) determines malefactors’ individual characteristics, skill level, their

initial position (insider/outsider, available points of entry, etc.), the set of permissions, possible

actions/attacks already fulfilled (which can be predicted according to events and alerts) and

knowledge about the analyzed network.

- The Attack graph generator (AGG) builds attack graphs (or trees) by modeling sequences of

malefactor’s attack actions in the analyzed computer network using information about available

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 41/63

attack actions of different types, services dependencies, network configuration and used security

policy. Attack graph generator can also build attack traces taking into account zero-day

vulnerabilities – unknown vulnerabilities which are required to compromise network assets.

- The Security evaluator (SE) assists the selection of solutions (validated events and alerts, possible

future security events, countermeasures) needed for other MASSIF SIEM components. It

simulates stochastically multi-step attacks and studies the cost and effect of various

countermeasures. For example, it generates combined objects and calculates their security metrics

in order to evaluate the common security level and possibly make recommendations on

strengthening it.

- The Reports generator shows vulnerabilities detected by AMSEC, represents “weak” places,

generates recommendations on strengthening the security level and depicts other relevant security

information.

Interaction with other MASSIF components

Results and setting of the Attack Modeling and Security Evaluation Component (AMSEC) are

presented at and controlled through the Visualization Component. The major part of input and output

data flows goes through Repository. Interaction with Visualization and Repository components takes

place at all stages and modes of AMSEC operation.

At each stage of functioning (Design (configuration) and Exploitation) AMSEC interacts with

different MASSIF components.

- Design (configuration) stage

AMSEC needs to have a detailed description of protected network topology and configuration for

correct and efficient operation. This information is retrieved from the user (through the Visualization

system), from predefined data (through Repository) and from sensors placed in the network (through

the Resilient Event Bus or the Event Processing module). As a result, AMSEC produces attack graphs

and calculates security metrics.

Attack graphs can be used to refine Event Processing rules, and security metrics can be transferred to

the Decision Support and Reaction (DS&R) component to form the list of recommendations to

increase the security level. Since at this stage real-time mode is not required, the information flow can

go through the Repository.

- Exploitation stage

There are several tasks performed by AMSEC at this stage: (1) attack graphs adjustment; (2) attack

detection improvement by searching matches between real-time events and attack graphs; (3) security

metrics evaluation and prediction of potential threats and attacks.

AMSEC needs interaction with other components to fulfill these tasks.

- Task 1 (attack graphs adjustment): AMSEC needs information about changes in controlled

network. The Event Processing (through the Repository) is the source of this information. Thus,

information on network changes comes to SG and MM that make changes in the network and

malefactor models stored in Repository. After that AGG and SE recalculate stored attack graphs

and security metrics basing on updated models.

- Task 2 (attack detection improvement). It is assumed, that the Event Processing uses attack graphs

to increase the precision of intrusion detection and to detect zero-day vulnerabilities. This data

flow is not a direct, because not real (but near real-time) mode of AMSEC. Therefore information

flow goes through the Repository.

- Task 3 (security metrics evaluation, threat and attack prediction): in this task AMSEC interacts

with the Predictive Security Analyzer (PSA). It should be noted that this information flow is not

direct - both AMSEC and PSA are not real-time components, so flow goes through the Repository.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 42/63

We assume that security metrics, produced by AMSEC, can be used in "on-if-do-why" chain and

attack graphs can be applied in the PSA state model. Moreover the determination of malefactor

transition through the attack graph can initiate the transition on the state graph and vice versa. The

information from the PSA can be also used by AMSEC.

4.3.3 Decision Support and Reaction

The OrBAC model defines the security policy formalism, but it does not specify the way it should be

implemented. The Decision Support and Reaction subsystem designs and develops an administrative

tool based on the OrBAC model, which allows to consolidate the security policy through the different

infrastructure’s components in an organization, and to configure automatically those components. This

section describes the architecture of PyOrBAC, our implementation of the OrBAC-based Decision

Support and Reaction subsystem.

Architecture overview

The proposed architecture follows a client-server model, as shown in Figure 13. The PyOrBAC

Engine acts as a server that allows the centralization of the access control policy administration; and a

set of agents ensures the policies configuration of the PyOrBAC associated components.

DS&R agents were discussed earlier in Section 4.1.3: these components aim both at reconfiguring

Policy Enforcement Points (PEP) components and at providing assistance to manage contextual

information that is not natively handled by the PEP. The DS&R agent receives instructions from the

PyOrBAC Engine. These flow down the infrastructure from the core to the edge, as depicted in Figure

13.

Decision Support and Reaction

Repository

G
e

n
e

ric Ev
e

n
ts D

isse
m

in
a

tio
n

V
isu

a
lisa

tio
n

/G
U

I

PyOrBAC

Engine

Validation and

Deployment

PyOrBAC

Engine

Management

Interface (API)

PyOrBAC

Engine

Policy

Compiler and

Conflict

Resolution

PyOrBAC

Engine

Security

Policies

(xorbac)

Commands

Complete

policies
PyOrBAC

Engine

Complete

policies

Policy

Elements

← API

Commands

Policies→

Event Digests / Security Alerts

Threat Models Digests

Figure 13 - Decision Support and Reaction Component (DS&R)

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 43/63

PyOrBAC engine architecture

PyOrBAC is an OrBAC-based security policy engine implemented in Python that aims at creating a

centralized security policy infrastructure based on the requests received by the administrator. The

implemented solution offers the following advantages:

- It allows the security policy configuration of external systems called associated components (e.g.,

Apache, MySQL, LDAP, etc) from the PyOrBAC engine, which means that administrators do not

need to know the configuration rules of other components; they only need to manage the

PyOrBAC platform to configure all the security policies.

- The administrator is able to easily identify the existence of conflicts among rules. For instance, it

would not be possible for the administrator to detect that one security policy is affecting LDAP

and Apache if he had to manually configure each infrastructure. In contrast, by configuring the

security policies through PyOrBAC, the system automatically detects and informs the

administrator of the existence of a conflict before apply it.

- Security policies are dynamically configured through the use of contexts, which allow the system

to react more rapidly to any change (e.g., intrusion attempts, attacks). It is therefore necessary to

clearly define the contexts and the monitoring system in order to properly detect the context

changes thus allowing PyOrBAC to execute the respective changes in the configuration.

- All the new generated security rules can be applied simultaneously to all the components

associated to the organization. For this, PyOrBAC broadcasts the new rules so that all the

components change the configuration accordingly.

- PyOrBAC is able to identify pre-existing configurations and save them in its repository so that the

engine knows all the security policies of a given organization in order to validate them and detect

conflicts. For instance, let us suppose that LDAP and MySQL have already their own security

policies, PyOrBAC should be able to detect and store them in its repository so that every time the

administrator wants to configure a new policy, PyOrBAC can verify first, that the policy has been

already created and second, that the new policy does not create any conflict with other existing

policies.

The PyOrBAC engine consists of five modules: Management, Compiler, Security Policies, Validation

and Deployment. Further details about the functions of each module will be provided in.[12]

Interaction with other MASSIF components – operations (runtime) view

In operation, the PyOrBAC engine expects to receive alerts in IDMEF format [5] , that is XML

messages, over a stream interface. Four MASSIF components have been identified that provide such

messages:

- The Generic Event Translation (GET) component provides alerts that are directly usable by the

PyOrBAC engine, provided that the appropriate configuration action has taken place (see next

subsection), as this represents immediate and current threat information that needs to be mitigated.

However, GET components are likely to provide high volumes of information, which feed the

Event Processing module for correlation and as such a direct interface between GET and

PyOrBAC is not desirable.

- The Event Processing (EP) component provides correlated events and alerts that are stored in the

Repository. These are directly usable by the PyOrBAC engine, which gets them from the

Repository, provided that the appropriate configuration action has taken place (see next

subsection). As the EP engine provides correlated, high-density information, it is the preferred

alert stream interface to the PyOrBAC engine.

- The Predictive Security Analyzer (PSA) component provides alerts that are also usable by the

PyOrBAC engine. These events are also stored by the PSA in the Repository and made available

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 44/63

to the PyOrBAC engine, provided that the appropriate configuration action has taken place (see

next subsection), and that the evaluation of the change of security state takes into account the fact

that contexts may be cancelled if the prediction of security state change is invalid. This requires a

manual parameterization of the PyOrBAC engine.

- The AMSEC component provides alerts that are usable by the PyOrBAC engine. These events are

also stored by the AMSEC in the Repository and made available to the PyOrBAC engine,

provided that the appropriate configuration action has taken place (see next subsection), and that

the evaluation of the change of attacker posture takes into account the fact that contexts may be

cancelled if the prediction of attacker posture change is invalid. This requires a manual

parameterization of the PyOrBAC engine.

Interaction with other MASSIF components – configuration view

In order to properly configure the PyOrBAC engine, there is a need for a mapping between certain

alert parameters (typically the IDMEF Alert.Classification field) and security policy contexts. The

current need is limited to a common dictionary of signature “words”, so each of the GET, CEP, PSA

and AMSEC modules should include the ability to list the Alert.Classification.text information that

they can generate.

In addition, and at a later stage, the countermeasure evaluation component can be coupled with PSA

and AMSEC. The objective of this coupling is to shift the configuration of the costs used in the

computation of the Return on Response Investment (RORI) index (see [12]) from design time to run-

time.

4.3.4 Visualisation

The Visualization component is responsible for displaying, managing and responding to different

information (e.g: events, situations, alarms), providing a convenient and effective GUI to interact with

some MASSIF components, visualizing data and fulfilling management and administrative tasks.

The main inputs for visualisation are directed from Repository or from application services through

the Repository or directly from other MASSIF components: alerts from Decision Support and

Reaction (DS&R) component through Repository; security metrics and simulation results, generated

by Model Management component (PSA and AMSEC) and available from Repository; settings of

AMSEC and PSA components; security events, generated by Event Processing and available from the

Repository; access to historical data historical analysis and produce statistical reports.

Besides, it provides a convenient user interface to: to schedule tasks and edit rules for Model

Management component and DS&R; to configure security policies and perform repository

maintenance; to create and configure security models (event/process models, attack/attacker models,

simulation models).

The following architecture of Visualization component (Figure 14) is considered. It can be viewed as a

simple two component model which includes User Interface and Control Middleware.

The User Interface is separated from the Control Middleware to facilitate the development of different

user interfaces (starting with simple command line finishing with rich user interface).

- In the general case, User Interface is a simple main window form of an application.

- The Control Middleware consists of two main modules: Plug-ins Manager and Visual Component

Controller.

• Plug-ins Manager interacts with other components using plug-in mechanism. It is

responsible for registering, managing, including or excluding different plug-ins.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 45/63

• Visual Component Controller is responsible to manage graphical items including

start/stop visualization threads (pipelines) on demand of requests both from Plug-in

Manager and users. Visual Components provide a set of graphical primitives (charts,

treemaps, graphs, etc) to process input data and render it.

Figure 14 - Visualization Component

The following example illustrates general principle of Visualization Tool functioning. The user via

User Interface generates the request to some MASSIF component that is managed by the

corresponding plug-in. The plug-in forwards the request to the MASSIF component and then receives

the generated response using the MASSIF component API. The plug-in interface allows this plug-in to

communicate with graphical items via the Visual Components Controller, selecting the adequate

primitive (e.g., a net graph), producing the needed graphical presentation (picture).

4.3.5 Repository

The Repository offers a general storage service, safeguarding data and allowing indirect

communication between different MASSIF components. The repository is implemented according to

the SOA principles [4] . The advantages of this architecture are the flexibility and loose coupling of

components, which provides high scalability and extensibility of the system. Figure 15 shows the

general architecture of Repository (CRUD designates basic operations Create, Read, Update, and

Delete).

In accordance with the main principles of SOA, the MASSIF repository architecture can be divided

into Web services API, Repository services layer and Repository storage layer, as detailed in [4] and

summarized here. In addition to these layers, an access control layer provides the necessary

authorization rights [4] . The Repository manipulates the following types of information: Events;

Incidents; Alarms; Decisions; Vulnerabilities; Attack graphs; Users (for RBAC) and others.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 46/63

Figure 15 - Repository architecture

The Web services API is an interface for interaction with application layer components.

The Repository services layer allows abstracting the interaction between one or more objects,

workflows and services through an intermediate interface API. It consists of the presentation level and

data access level: presentation level covers everything that is related to interaction with the MASSIF

components; data access level interprets the queries for data retrieval, received from MASSIF

components in the language notation used by the underlying database management system (DBMS).

The Repository storage layer includes generic data and data related to different MASSIF application

services: event data, AMSEC data, PSA data and DS&R data.

For full support of different information models being developed in the MASSIF, hybrid approach in

the repository storage layer is used [4] . This approach combines the possibilities of relational DBMSs,

XML-based repositories and triplet stores. Triplet store provides an ontological representation of the

data model, and uses the logical reasoning to select the data.

One of the most important components of Repository storage layer is the event data. It has very strong

scalability requirements due to it should be able to store not only the output events that can be a small

load, but also the input events from the edge services that can be a very high load. For this purpose,

the event repository will be parallel-distributed and will use a state of the art cloud data store solution

providing high scalability. To store AMSEC data we intend to use all three kinds of data

representation (relational, XML-based and triplets). Predictive Security Analyzer data and Decision

Support and Reaction data will be stored in relational and XML-based stores.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 47/63

5. Resilience Mechanisms

This section gives an overview of the resilience aspects of the MASSIF architecture. As such, we

discuss the motivation, requirements and mechanisms behind one of the objectives of this architecture:

to provide seamless integration of resilience into distributed SIEM systems, with the aim of ensuring

several levels of security and dependability in an open, modular and versatile way.

Some of the features that characterize the infrastructures on which these SIEM systems may be used

are the following:

- The infrastructures can be highly distributed and large-scale, both in a geographical sense and with

respect to the number of entities involved;

- The infrastructures are heterogeneous, composed by end systems from possibly many vendors,

with very diverse software and operating systems;

- The networks interconnecting the end systems can be of different kinds, from more confined and

controlled ones to essentially open, generic and non-structured networks like the Internet.

On the other hand, a diagnosis of the shortcomings of current SIEM systems, which led in part to the

proposal of the MASSIF architecture, can be described succinctly by the following:

- inability of encompassing ICT infrastructures with global deployment, since they normally

consider events from single organizations;

- incapability of providing a high degree of trustworthiness or resilience in event collection,

dissemination and processing, thus becoming susceptible to attacks on the SIEM systems

themselves;

- centralized rule processing, making scalability difficult by creating bottlenecks and single points

of failure.

- lack of reaction capabilities (current SIEMs being “detect only”, it is difficult to take action on the

information they provide);

This scenario points to three main issues:

- the monitored environments are increasingly exposed to threats, rendering the monitoring task

more complex;

- this dramatically increases the dependence on the monitoring systems to ensure secure and

dependable operation of the monitored systems in real-time;.

- the monitoring systems become a target of attack themselves, being prone to different sorts of

failures.

Since the SIEM subsystems that perform event collection, delivery and processing have today a highly

distributed nature and operate in essentially the same environments as the monitored systems, they can

also become targets of attacks and accidental faults. These problems are expected to become even

more prevalent with the increasing inconspicuousness of computing systems and networks, and as

security information and events start to concern not only common IT devices (e.g., firewalls, routers,

application servers) but also critical information infrastructures, which for instance observe and

control physical processes (e.g., a dam or a power plant).

Therefore, it is important to improve the trustworthiness of SIEM systems by developing appropriate

solutions to achieve resilience. We establish the rationale for the MASSIF resilient architecture

through a list of propositions that state a set of required macroscopic properties of the system. In

consequence, the reader and/or potential developer or user can get a clear view of what is behind the

architectural options proposed for MASSIF resilience. Furthermore, since the architecture will be

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 48/63

developed having in mind the requirements imposed by the above-mentioned propositions, one can

gain confidence that the architecture and respective algorithms and middleware are bound to satisfy

the imposed requirements:

- Proposition 1: Complement classical security techniques with resilience mechanisms

• Classical security techniques are largely based on prevention, human intervention and

ultimately disconnection. There is thus a need for achieving tolerance, automation and

availability, both under attack and in the presence of major accidents [18] .

- Proposition 2: Promote automatic control of macroscopic information flows

• There is a growing need for SIEM systems to encompass multiple ICT infrastructures,

achieving a global span. In such complex, large-scale, multi-tenant and distributed

infrastructures, any security solution, to be effective, has to involve automatic

mechanisms to secure the macroscopic command and information flows between the

major modules, such as: between layers of different trustworthiness, from unprotected

edge layers up to the more protected core realm; amongst peer layers implementing

resilience-improving mechanisms.

- Proposition 3: Reconcile resilience with legacy preservation

• One should modify and/or interfere with the monitored system (payload) the least

possible. As such, the SIEM system should preferably be deployed as a sort of overlay

infrastructure, a system functioning in parallel with the payload system, with hooks to the

latter at appropriate points. Likewise, resilience solutions should, in turn and as much as

possible, be transparent to the functionality of the SIEM system and, in consequence, to

the payload system. On the other hand, those solutions should be open and configurable,

facilitating the porting to a diversity of SIEM systems.

- Proposition 4: Avoid single points-of-failure

• This objective gains paramount importance with the increasing dependence on the

availability of SIEM systems to secure the operation of on-line, often 24x7, large-scale

infrastructures. As SIEM systems become more sophisticated and effective, there is an

obvious trend for them to become targets of attack (neutralizing the sentinel) before direct

attacks are staged on the payload systems. Avoiding this problem is one major reason for

the objective, in MASSIF, of making the monitoring infrastructure itself resilient to direct

attacks. Redundancy and diversity both purposely introduced and derived from the sheer

infrastructure richness and complexity, will be used to devise fault and intrusion tolerance

mechanisms, keeping the system working despite the failure of individual components.

- Proposition 5: Secure timeliness in the presence of faults and attacks

• Reconciling security with timeliness is a hard problem. Synchronous (or real-time)

systems offer an additional attack plane to adversaries, where they can attempt to

compromise the ’values’ in the system, but also the ’time’ properties. This is why security

solutions in distributed systems tend to be asynchronous. In systems providing a real-time

view, and requiring real-time capability of reaction, achieving security at the cost of

timeliness would be counterproductive. As such, one fundamental algorithmic and

architectural challenge will consist in simultaneously preserving security and timeliness

properties of the information flows coming from the collection points (the edge) to the

processing engines (in the core) and vice-versa.

The intent of this section is to describe the main techniques that are being explored in MASSIF to

improve its resilience. In our approach to increase resilience, we will employ prevention techniques

whenever possible to deal with various types of threats, such as eavesdropping and/or tampering of

messages. For instance, traditional cryptographic solutions based on in symmetric encryption and

Message Authentication Codes (MAC) are highly effective at averting this sort of attacks, and

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 49/63

nowadays they provide efficiency levels that can address information flows with huge amounts of

events. However, some more severe attacks are hard to solve with prevention solutions alone (e.g., an

intrusion in the core-MIS machine), and therefore, it advisable to employ mechanisms to achieve

tolerance [18] [19] . In short, instead of trying to prevent every single intrusion or fault, they are

allowed, but tolerated: systems remain to some extent faulty and/or vulnerable, attacks on components

can happen and some will be successful, but the system has the means to trigger automatic

mechanisms that prevent faults or intrusions from generating a system failure. Additionally, while

disconnection can be an effective solution to avoid the propagation of attacks, it may imply significant

performance degradation and may have very negative and costly implications to service provision. It is

thus important to seek for solutions that allow availability under attack.

Given that, as we have assumed earlier, different Facilities/Networks of the payload and the SIEM

system may have different levels of trustworthiness, and that distinct application and systems will

require different levels of trust, the architecture must allow for an incremental range of resilience

solutions, in the interest of the best trade-off with performance, cost, or complexity.

5.1 Attack Vectors

This section analyses the susceptibility of the MASSIF architecture to faults and attacks, some of

which of possibly large and/or uncertain magnitude. It is interesting to start by analysing what are the

potential attack vectors, put in context with the MASSIF architecture, as depicted in Figure 16.

Facility

Internet

Facility

Facility

Facility

Aux
Services

Aux
Services

Facility

Core

MIS Core
SIEM

Services

Sensor

Edge

MIS

Sensor

MIA

Edge

SIEM

Services

Edge
SIEM

Services

Sensor

MIA

Edge

MIS

Edge
SIEM

Services

Core
SIEM

Services

Core

MIS

Resilient

Event Bus

Generic Events

Edge

MIS

Edge
SIEM

Services

Sensor

Sensor

1

3

4

2

5

6

7

Figure 16 - Estimated attack vectors to the MASSIF SIEM architecture

As shown in the figure (illustrated by arrows), in such a distributed and large-scale architecture, there

are obviously several attack vectors:

- sensing flow integrity, which typically uses standard protocols (arrow 1) --- e.g., tampering with

the standard protocols conveying information (e.g., SYSLOG) from devices to the edge-MIS:

interrupting, delaying, re-ordering, replaying, forging, etc.;

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 50/63

- edge-MIS, targeting its availability and/or the integrity of event collection and/or communications

(arrow 2) --- e.g., disruption (DoS) or penetration attacks on edge-MIS: SIEM services and/or

communication protocols;

- MIA, with the objective of attacking its availability and/or the integrity of remote event collection

and/or MIA-to-MIS communications (arrow 3) --- e.g., disruption (DoS) or penetration attacks on

device-resident MIA: SIEM services and/or communication protocols;

- Event Bus, targeting its confidentiality, integrity and availability (arrow 4) --- e.g., tampering with

the MASSIF protocols conveying information between MISs: interrupting, delaying, re-ordering,

replaying, forging, etc.;

- core-MIS, aiming at attacking its availability and/or the integrity of the protection service and/or

the communications (arrow 5) --- e.g., disruption (DoS) or penetration attacks on core-MIS: SIEM

services and/or communication protocols;

- core systems, targeting their availability and/or integrity (arrow 6) --- e.g., disruption (DoS) or

penetration attacks on core services (SIEM Engine, Historian, GUI, etc.);

- auxiliary services, targeting integrity of interactions (arrow 7) --- e.g., disruption (DoS) or

penetration attacks on auxiliary services.

These attack vectors have to be prevented from compromising the correctness of the SIEM system, by

employing the appropriate mechanisms and protocols that safeguard the operation of the nodes and the

communications. These mechanisms and protocols will be implemented in middleware software that

will offer primitives for the development of specific SIEM services. In this section, we discuss how to

achieve integrity of the key component MASSIF Information Switch (MIS), and then we consider two

important aspects of the middleware, namely the support for communication and event dissemination

and storage of information.

5.2 Incremental MIS Resilience

In this section, we discuss techniques to improve the resilience of specific nodes of the architecture,

such as the edge and core-MIS. The MIS can be built with incremental levels of resilience, depending

on its criticality.

The edge-MIS is the simpler instantiation, since it is placed at more locations on the data collector side

and costs may be a concern. It receives information with a limited degree of trustworthiness, since it is

produced by untrusted machines and mainly conveyed by standard protocols. The edge-MIS is located

on the sensors side, it is normally single-homed, but in some cases may be dual homed for protection

of specific bulk and/or critical source traffic (i.e., IDS).

The core-MIS is positioned on the core processing elements side, and it is normally dual-homed, to

actively protect the core SIEM servers. It is also bound to have the most sophisticated resilience

mechanisms, since it protects key core servers.

A key issue is the resilience of the MASSIF nodes (MIS) against direct attacks. We give a few

examples illustrating the possible MIS construction methods, to achieve the desired incremental range

of resilience:

- Ruggedised simplex: single ruggedised machine, where various intrusion prevention techniques

are applied to increase security (e.g., a better identification and authentication scheme; careful

configuration of network services and removal of unnecessary applications);

- Loosely coupled duplex or N-plex: the service is replicated in two or more machines loosely

coupled in the network;

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 51/63

- Closely coupled N-plex: the service is replicated on N machines connected with a private

broadcast network;

- Tightly coupled N-plex: the service is replicated in a virtualized node running N diverse guest

operating systems (to prevent common vulnerabilities);

- Twin quad: two replicas of virtualized nodes, each one running four virtual guest operating

systems (to guarantee Byzantine fault tolerance and availability in case of a node crash).

Resilience of the time related mechanisms is also of great interest, since the MASSIF global time base

is implemented by the MIS/MIA. Data-layer services implemented in the edge-MIS/MIA, as well as

the Even-layer services, have access to local clocks which are collectively synchronized, providing a

global and trustworthy notion of time.

Details of implementation are outside the scope of this paper, but this can be achieved either through

the use of external synchronization to an absolute reference (e.g., GPS time synchronization) or

through internal synchronization using clock synchronization protocols such as the Network Time

Protocol (NTP), highly-fault-tolerant versions existing as well. One important implication of assuming

the existence of a global and trustworthy notion of time is that time stamps can be used, in general, to

infer about the timeliness of events and about their ordering, which is very important in the context of

MASSIF, since it allows faithful correlation of events in the SIEM. The ability to correctly time-stamp

events at the MIS/MIA is all the more important because, as assumed (see Section 2.2): some sensors

at the edge layer may not have access to local clocks (e.g., physical sensors); some sensors with local

clocks may exhibit poor synchronization, or be vulnerable to timing attacks.

5.3 Event Bus Resilience

The communication among the MIS plays a fundamental role in the MASSIF resilience architecture.

This feature is responsible for delivering events from the edge services to the core SIEM correlation

engine despite the threats affecting the underlying communication network. To give this kind of

guarantee we will employ application-level routing strategies among the MIS nodes, in such a way

that they form an overlay network able to deliver messages in a secure and timely way. Overlay

networks have been used as mechanisms to implement routing schemes that take into account specific

application requirements [20] . In the MASSIF resilience architecture we want to employ overlay

networks to create redundant network-agnostic channels for timely and robust event transport from the

edge sensors to the core event correlation engine. There are two thus main requirements on the inter-

node MASSIF communication middleware.

First, timeliness: messages should be transmitted respecting some delivery deadline. The objective is

to make the events be processed at the correlation engine while they are (temporally) valid, which

requires the communication subsystem to enforce timeliness properties of the communication. One

should thus assume that there is eventual synchrony, that is, assume that message transmission latency

is bounded. However, we must note that the underlying infrastructure can be the target of performance

instability, or of attacks (is not trusted by default) which impact on the coverage of those latency

assumptions. Although it may be difficult to state the exact bound, specific bounds have to be assumed

at run-time, which means that the network will alternate between synchronous and asynchronous

behavior, which is undesirable for our objective. Overlay networks might provide the necessary path

redundancy to provide for timing fault-tolerance. Unfortunately, most overlay networks do not have

this objective, and therefore, we will develop specific solutions to enforce these guarantees in the

MASSIF SIEM system. In the past, some approaches had the aim of improving the end-to-end

communication latency, but not of attaining application-defined maximum delays (e.g., [21] [22]).

Recently, a timeliness-aware application-level routing solution called Calm-Paranoid (CP) was

proposed [23] , using overlay/multi-homing techniques. Although the CP algorithm solves in part the

timeliness requirement of the communication, it was designed considering a static set of nodes that

only fail by crashing; therefore, it can not address the case where some nodes might be compromised

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 52/63

by a malicious adversary (i.e., nodes that are subject to Byzantine failures). We will build on these

results.

Second, robustness: the middleware should tolerate malicious intrusions in some of the nodes, such as

in data forwarding devices (e.g., routers) and eventually in a subset of the MIS. Our initial approach to

solve the problem is to enhance the CP algorithm with Byzantine-routing capabilities [24] [25] and

network coding techniques [26] . The idea is to send each message through 1 to 2t + 1 different paths

chosen based on how disjoint they are (i.e., minimizing the number of common nodes among them)

and their timeliness (their expected delivery time must be smaller than the message delivery deadline),

being t a bound on the number of channel faults during the message transmissions. In order to avoid

the bandwidth overhead of sending the same requests more than once, one idea is to use network

coding algorithms to generate message blocks to be sent using different channels. With this technique,

each channel will only transmit a fraction of the message size and a receiver will be able to recover the

message as long as it receives at least a subset of the blocks and decode them.

5.4 SIEM Core Protection

The MASSIF architecture allows for multiple strategies for protection of the core components

executing application layer services.

The simplest one is perimeter defence, by isolating the core components within trusted intranets,

isolated from the outside by core-MIS. Actually, this is the baseline protection offered in the

architecture, as depicted earlier in Figure 3. This kind of protection is quite effective, since all the

application subsystems are inside a perimeter which only communicates with the outside through a

MIS, in two ways: with the Resilient Event Bus; and with auxiliary systems.

The Resilient Event Bus is an overlay communication subsystem internal to the MASSIF SIEM and

thus itself protected, much in the sense that secure VPN (Virtual Private Networks) are. Auxiliary

systems are any external systems accessed by the core application layer services (e.g., email, web,

corporate servers) resident in networks alien to the MASSIF SIEM, either operated by the monitored

system owners or by SIEM managed service subcontractors. They are considered untrusted in the

SIEM fault/threat model, and as such traffic with them is carefully filtered by the core-MIS.

We also recall a second pillar of perimeter protection: besides executing protection functions, the core-

MIS is itself built with resilience enhancing mechanisms, as discussed in Section 5.2, to protect it from

direct attacks.

It should be noted that the publish-subscribe nature of the Resilient Event Bus communication model

extends the modularity of the edge subsystems to the core systems (in fact, suggested in Figure 3):

application servers may actually reside in more than one protected intranet, offering a multitude of

deployment and server placement strategies.

Besides this baseline protection, SIEM core resilience can be enhanced through more sophisticated

forms of protection, namely by mechanisms providing forms of defence in depth, for example,

solutions featuring fault and intrusion tolerance of application servers themselves. Such solutions

would for example provide resilience against insider attacks. Though they are not the focus of the

instantiations foreseen for the project, several of the mechanisms advanced in Section 5.2 might be

reapplied successfully to achieve fault and intrusion tolerance of core servers.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 53/63

5.5 Resilient Storage

The storage solutions to be deployed in the MASSIF architecture have several purposes, requiring

different levels of resilience.

In this section we are concerned with a specialised kind of storage: those units dedicated to archival of

critical security information and events, requiring properties like integrity, confidentiality and

unforgeability. Furthermore, integrity should be strong, that is, not only detecting, but also preventing

successful attacks to integrity, so that information cannot actually be destroyed. This requires a

combination of security and dependability, and calls for example for intrusion-tolerant techniques in

the construction of the resilient storage units. One of the obvious uses of such resilient storage is to

archive important security information and events in a way justifiably usable for criminal/civil

prosecution of attackers after a security breach. Those attackers may include privileged users

(insiders), with ample access to internal systems. The need for going beyond classical security

techniques based on prevention is that erased log records are of no use, even if they were strongly

signed and/or integrity protected before erasure.

Techniques like replication, diversity management, coding and threshold cryptography will be

employed to guarantee unforgeability of the stored information, and to guarantee that the storage

system itself is tolerant to faults and intrusions. Additionally, traditional techniques such as access

control need to be used to ensure that certified records of security breaches will be made available

only to authorized parties, based on existing and upcoming regulations.

The architecture of the Resilient Storage is illustrated in Figure 17. The figure also illustrates the

interactions with other MASSIF components. The Processing Engine is the main MASSIF component

in charge of feeding the resilient storage. The Processing Engine is able to process a massive amount

of events per second e.g. 100s of thousands of events per second. From this huge pile of security

events, only a few are of interest for forensic analysis. So only the events which are generated during a

security breach are sent to the Resilient Storage by the Processing Engine to be stored for the potential

forensic analysis (at a later time). We refer to this design approach as to the “Least Persistence”

principle. In order to store data, the Resilient Storage exposes a very simple interface (very much like

a “write” command), that hides its internal - sophisticated - mechanisms. In order to provide extreme

unforgeability guarantees, data is not signed by means of standard techniques. Instead, a threshold

cryptography mechanism is used. In a nutshell, threshold cryptography involves the distribution of

secret key into different shares. The key is divided into shares in such a way that a certain number of

shares, when combined, yield the original secret but corrupt share holders less than this certain

threshold cannot calculate the secret. Also, the shares do not contain or reveal full or even partial

information about the secret key that may be helpful to guess the secret. In this way the system is

made Intrusion and Fault Tolerant, since if some of the shareholders are compromised or become

corrupt, the system continues to provide its functionalities correctly.

The process for creating a forensic record, i.e. an unforgeable record related to a security breach is as

follows. The event related to a security breach is fed to all the individual threshold cryptography units,

i.e. to all participants of the threshold cryptosystem. Each unit implements a hash function which

calculates the digest of the security event whose unforgeability is required. The hash function accepts

a variable size message as input and produces a fixed size output. The output of the hash function goes

as input to an encrypt function which encrypts the message digest with the secret share as the

encryption key, i.e. produces a cipher which is called a partial signature of the security event. A

component, called combiner, is responsible for assembling all partial signatures received from

participants of threshold cryptosystem to generate a full signature. The full signature is attached to the

original event, thus forming a signed security record, i.e. a forensic record. Forensic records are

eventually stored using a persistent storage facility. They will be made available to application level

services implementing forensic features. In order to read the stored messages a “read” command is in

charge of authenticating the reader and of retrieving the stored data.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 54/63

Figure 17 - Architecture of the Resilient Storage

Replication and diversity are employed in each processing stage to further improve the Resilient

Storage tolerance to faults and intrusions. In particular, the threshold-based signature scheme, the

combiner, and the storage are all replicated via a set of software replicas, which are deployed on a set

of independent servers, implementing diversity at several architectural levels (i.e. hardware, Operating

System, system software, and more).

The signed security events are stored according to the occurrence time, making it easy to access the

signed events corresponding to a particular security breach. The backup Storage ensures the

availability and resilience of signed security events in case of attacks of storage systems.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 55/63

6. MASSIF Architecture vs. Existing Systems

Security Information and Event management systems have existed for about 10 years. Even though

they still can be improved, they are being commercially successful today, which shows that designing

an entirely new SIEM system from the ground up would be an enormous effort for little benefit.

Instead, the MASSIF project has chosen to partner with two prominent open source SIEM, OSSIM

and Prelude, to reuse existing functions provided by these SIEM implementations and to improve on

the ones that make the most sense. The open-source choice (even though we are also looking at

commercial SIEM environments) has been made because it eases analysis and integration. This section

will thus focus on the MASSIF components that could supplement, improve or replace existing SIEM

functions with advanced functionalities. This section will focus on malicious activity detection,

infrastructure resilience, alert correlation, decision support and counter-measures, which are the key

contributions of MASSIF to existing SIEMS.

6.1 OSSIM

Typical OSSIM installations share many concepts with the design of MASSIF. It’s common sense to

collect events at the edges and transport events up to the center where the SIEM collects events,

correlates, analyses etc.

We will discuss some analogies and differences between OSSIM and MASSIF in this chapter, based

on functionality and component.

6.1.1 Functional view

Translation Layer

The MASSIF translation layer is responsible for the conversion of events from event emitters (usually

at the edge infrastructure) to a generic event format. This conversion or in the OSSIM case

normalization is done directly on OSSIM sensors. The resulting format is the OSSIM message format,

which is sent to an OSSIM server component for further processing.

Normalization

Normalization in the MASSIF architecture is planned to be done on the Edge MIS through the GET

architecture.

The MASSIF GET architecture is very similar to the architecture of OSSIM data sources (often

referred as plugins). OSSIM agent features pluggable parsers (analog to the Adaptable Parsers in the

MASSIF architecture) that compute specific events sent from any attached system and translates

(normalizes) those events to the OSSIM message format, which can then be forwarded to the next

destination, which is typically a OSSIM server instance.

Right now OSSIM server does not feature a automatic recognition of the input data source as

described in the MASSIF architecture via an event dispatcher. A manual recognition is implemented

and is typically done when setting up the infrastructure. This approach has some tradeoffs, but

simplifies normalization and decreases complexity in the running system.

Automatic event dispatching is not trivial and may not always produce the right dispatcher decision

(e.g. duplicate process names in syslog sources that are used to make a dispatch decision).

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 56/63

Correlation

Correlation in MASSIF is performed by the Complex Event Processing system, correlation logic is

implemented by CEP queries.

OSSIM does not implement elastic correlation in a cluster of nodes. Correlation is happening on single

OSSIM servers. No precorrelation is done on sensors.

The OSSIM correlation is based on correlation directives, that are modelled in XML files. As part of

the MASSIF project the translation of OSSIM correlation directives into Complex Event Processing

queries is part of WP 3.4.1.

Aggregation

Aggregation in the OSSIM architecture is typically happening on a SIEM server (OSSIM server).

OSSIM sensors do not preaggregate any events. This happens only on final destinations where

correlation is done and typically only for events that have a calculated risk equal to or greater than 1.

Generic events dissemination

OSSIM does not provide a generic events dissemination mechanism as described in the infrastructure

services section of the MASSIF architecture. The dissemination in OSSIM is done solely based on

configurations.

Decision support and reaction system

A decision support and reaction system is not implemented in OSSIM. OSSIM features a action

mechanism that is attached to policies. A policy can have any number of attached actions. A policy

can be limited IP addresses, network assets (Hosts, Hostgroups, Network Groups, Networks). A policy

can also be limited to a specified time range (e.g. Mon-Fri, 8-5) and different data sources or a set of

data sources.

Actions include opening a ticket in the internal ticketing system, sending an email with the event data

or executing a program on the SIEM server. This functionality can be used to provide a reaction to

specific events, event groups, events on single hosts or hostgroups etc (e.g. trigger a script to lock an

attacking IP address out of the network on the firewall, shut down a switch port). There is no

framework and no enforcement or limitations on what the specified command can do.

6.1.2 Per component view

MASSIF information switch (MIS)

The MASSIF information functionality can be seen as a hybrid of an OSSIM agent and a OSSIM

server residing on the same platform.

The entry point for security events is usually an OSSIM sensor running an agent, that collects and

normalizes data from various event emitters. That data will then be normalized and delivered to one or

several OSSIM servers (an OSSIM server can be installed on the same system as the sensor). After the

event is received the server will take a policy-based decision how to compute the incoming event. An

event can be correlated and stored locally, can be dropped from further processing, etc.

A traversal of events through a hierarchy of SIEM servers (MASSIF MISes) is not provided in the

open source OSSIM server.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 57/63

MASSIF information agents

OSSIM does not know the concept of a agent running on the payload machine. However we make

heavy use of e.g. HIDS agents (OSSEC) that run on various payload machines and deliver security

events in OSSEC format to the OSSIM agent, which normalizes into OSSIM message format.

Generic Event Translation Platform

As explained in Section 4.1.1 (Normalization) the generic event translation GET finds it’s counterpart

in the OSSIM agent with its plugin architecture. The adaptable parsers very much do the same as the

OSSIM plugins do.

The GET manager behaves much like the OSSIM agent. It collects logs, decides on the adaptable

parser to use and normalizes the event. The GET manager also features automatic recognition of log

sources, which the OSSIM agent right now does not do. The OSSIM agent has similar controls as the

GET manager to activate and deactivate plugins from the framework.

The MASSIF event manager functionality is also included in the OSSIM agent, if not provided by the

parsers the OSSIM agent will prefill fields with reasonable data (e.g. timestamps, sensor information

etc.). The agent will also take care of timely delivery and buffering in case a upstream infrastructure

component is not connected. Events will be buffered until the remaining disk space is less than or

equal to 5% of total capacity. After that limit events will be discarded.

Resilient Event Bus

In the OSSIM architecture the concept of a Resilient Event Bus is not existing. Communications are

modelled in policies and configuration files. The event flow is not based on a publish-subscribe

pattern, but on the wired policies and configuration files.

Core MASSIF services

The core MASSIF services include the Complex Event Processing and the decision support module.

OSSIM does not provide a decision support functionality.

The Complex Event Processing engine finds its counterpart in the correlation engine that is built into

OSSIM server. Correlation directives are written in a XML syntax and deployed on the OSSIM server.

A correlation directive is triggered if the initial condition for the correlation directive is met. All

subsequent events are then checked if they match the current hierarchy in the correlation process. If

the correlation reaches the final rule and matches that rule a event is generated.

Repository

The repository in OSSIM is the OSSIM event storage engine, a database of all security events, alarms,

configurations and all metadata. OSSIM does not have the concept of a short or long-term storage as

described in Section 4.3.5. Neither does OSSIM feature an API to that information.

6.2 Prelude

We draw in this section an analogy between MASSIF architecture and components, and their Prelude

counterparts. In fact, although they may add new functionalities, or they may have a better

performance and scalability, most of the MASSIF components have their counterparts in Prelude. This

section compares those similar components. It shows the limitations of Prelude modules and motivates

the need to replace these modules with new MASSIF components.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 58/63

Figure 18 shows an example of a distributed Prelude architecture and we will point out the

correspondences between different components in the following subsections.

Figure 18 - Prelude Architecture with distributed Managers

6.2.1 MASSIF Information Switch - Prelude Manager

MASSIF Information Switches (MISes) correspond to Prelude Manager modules in the Prelude

architecture. Just as in the MASSIF architecture, Prelude Managers can form a hierarchy that is similar

to the hierarchy of edge and core MISes. Local Prelude Managers collect security events in a local

domain and relay them to the core Prelude Manager. Internally the Prelude components use a binary

representation of IDMEF [5] to exchange events and IDMEF corresponds to the MASSIF event

format. Within a given domain, the local Prelude manager gathers events either directly from Prelude

compatible sensors or indirectly using log and event parsing capabilities of the Prelude-LML

component.

6.2.2 Generic Event Translation Platform - Prelude LML

Sensors connecting directly to the Prelude Manager use the libprelude library. It implements a set of

functions required for these sensors to interface with the Prelude Manager.

Sensors that do not use libprelude are coupled with a Prelude-LML, which translates their output to

binary IDMEF, and forwards it to a Prelude Manager. Prelude-LML can be also used to process any

other log files to translate all or selected log events to IDMEF alerts. The translation is based on rules

that associate log fields to IDMEF elements and attributes. A set of predefined rules for various log

files exists, and user-defined rules can be added.

Prelude-LML reads logs from a file and doesn’t provide means for receiving remote logs. Thus it is

either co-located with the data source or the log delivery to Prelude-LML is to be handled by other

means (e.g. via syslog).

Prelude-LML corresponds to the Generic Event Translation (GET) platform described in the MASSIF

deliverable D3.3.1. Nonetheless, the GET platform offers more functionality than Prelude-LML, as

summarized in Table 1.

We thus expect an enhanced performance and scalability for event translation when replacing Prelude-

LML with the GET platform.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 59/63

Prelude-LML MASSIF Generic Event Translator

Does not support event dispatching Dispatches events according to their format.

Does not support event grammars. Handles event grammars and creates

adaptable parsers.

Does not support type recognition. Supports type recognition through the event

dispatcher.

Parallel parsing requires several LML

instances

Parallel event dispatching based on event

format.

Output only to a Prelude Manager Supports any output format whose grammar is

defined.

Table 1: Prelude-LML vs. MASSIF GET

6.2.3 Resilient Event Bus - Prelude communications

The MASSIF Resilient Event Bus is a publish-subscribe type bus connecting edge MISes to core

MISes. The resilient MASSIF architecture enables redundancy over core MISes, thus withstanding

single node failures.

The Prelude architecture supports Manager redundancy (events can be sent to all n Managers every

time or the sender can try the n Managers one at a time to find one that is available). The

communication channel is point-to-point and uses a client/server model.

All agents (i.e. Prelude-LML and compatible sensors) register themselves to their Prelude Manager,

and in a hierarchy of Managers the lower level Managers register themselves at the upper level

Managers. The registration process allows the exchange of public key certificates, which allows

mutual authentication of sensor-Manager and Manager-Manager connections.

All communications can be, and are by default, encrypted. Prelude thus guarantees the authenticity of

the communication endpoints, and the confidentiality and integrity of the exchanged messages.

6.2.4 Core MASSIF Services - Prelude Correlator, database and Prewikka

Core MASSIF services mainly include the Complex Event Processing Engine (CEP) for alert

correlation and the decision support module. The core MIS, which retrieves events from the Resilient

Event Bus, relays these to the core MASSIF services for event processing.

Prelude functions similarly. The central Prelude Manager collects events from local Managers. It

persists these events into a database and forwards them to the Prelude Correlator. The communication

between the central Prelude Manager and the core Prelude services (the Correlator and the database) is

bidirectional: the central Manager pushes events into these components, but also receives correlation

results and retrieves events from the database for the web-based visualization component called

Prewikka.

The Prelude Correlator module, illustrated in Figure 19, has an extensible architecture based on a set

of correlation classes built with Python. As shown in Figure 19, the Prelude Correlator is conceived

only to interface with the Prelude Manager. It registers to the Manager using the libprelude library.

Events are sent to the Correlator in the IDMEF binary format that is supported by Prelude. The

Correlator module builds internal data structures using those events, and then they are relayed to a

plugin manager. The plugin manager applies each of the correlation plugins, which are implemented

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 60/63

as Python classes, to the IDMEF data structures. Prelude Correlator supports context-based

correlation. A matching correlation class may thus trigger a new context that designates requirements

to be satisfied by events sent through the Manager. Correlation plugins are independent, and so the

Correlator design makes possible to define as many plugins as needed. Nonetheless, these plugins are

checked sequentially for every incoming event. A high number of plugins thus degrades the

performance of the Correlator. Compared to the CEP engine, Prelude Correlator is neither scalable nor

elastic.

Figure 19 - Prelude Correlator architecture

At a high-level, the MASSIF CEP engine and the Prelude Correlator have similar functions: they take

events as input, process (correlate) them and provide new correlated events as output.

Prelude does not provide any kind of decision support mechanisms. As the alerts are stored in the

Prelude database, an external component such as MASSIF decision support component could be

provided access to the alerts, and use these for threat response.

6.3 Potential MASSIF improvements

From the systems comparison done in previous sections, the main improvements provided by MASSIF

to existing open-source systems can be summarized in:

• Generic Event Translator: adding pre-correlation capabilities and automatic recognition of the

input data source.

• Resilient Bus: contributing to the secure dissemination of events from the monitored systems

to the core SIEM.

• Complex Event Processing Engine: improving the scalability and elasticity of the correlation

engine.

• Decision Support and Reaction: enhancing the adaptation capabilities of the SIEMs through

the automatic selection and implementation of countermeasures.

Moreover, the complete set of alternatives are analysed in detail in [28] .

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 61/63

7. References

[1] The MASSIF Consortium. Deliverable 3.1.1: Event processing engine architecture. Technical

report, 2011.

[2] The MASSIF Consortium. Deliverable 3.1.2: Design of the Distributed event processing

operators. Technical report, 2011.

[3] The MASSIF Consortium. Deliverable 3.1.4: Design of elastic computing component.

Technical report, 2011.

[4] The MASSIF Consortium. Deliverable 5.3.1: XML-based languages and repository. Technical

report, 2011.

[5] Hervé Debar, David Curry, and Benjamin Feinstein. The Intrusion Detection Message

Exchange Format (IDMEF). RFC 4765, March 2007.

[6] The MASSIF Consortium. Deliverable 4.3.1: Analytical attack modeling. Technical report,

2011.

[7] Java Compiler Compiler.“Homepage”.https://7.dev.java.net/7/ retrieved 2011-12-20.

[8] Project MASSIF. “D3.3.1 – Generic External Event Translation PlatformDesign”.April 2011

[9] Project MASSIF. “11 – Generic External Event Translation Platform”. January 2011

[10] Project MASSIF.“10 - Preliminary Resilient Framework Architecture”. Technical report,

Fundaçao da Faculdade de Ciencias da Universidade de Lisboa, 2011.

[11] Project MASSIF. “11 - Security probes for Service Infrastructures”. Technical report,

ConsorzioInteruniversitarioNazionale per L’informatica, 2011.

[12] Gustavo Gonzalez-Granadillo et al., "Specification of decision support, simulation, and

deployment software components", MASSIF project deliverable D5.2.1, June 2012. Work-in-

progress.

[13] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen. Analysis of vulnerabilities

in internet firewalls. Computers and Security, 22(3):214 – 232, 2003.

[14] Cisco. Cisco security advisories and notices. http://www.cisco.com/en/US/products/

products_security_advisories_listing.html.

[15] C. Middela, A. Dommeti, and K. Deekonda. Vulnerability analysis and management of an

internet firewall. Technical report, George Mason University, Fairfax, USA, 2007.

[16] P. Verissimo and A. Casimiro. The Timely Computing Base model and architecture.

Transaction on Computers - Special Issue on Asynchronous Real-Time Systems, 51(8):916–

930, August 2002.

[17] P. Verissimo, N. Neves, and M. Correia. The middleware architecture of MAFTIA: A

blueprint. In Proceedings of the IEEE Third Survivability Workshop, pages 157–161, October

2000.

[18] P. Verissimo, N. Neves, M. Correia, and P. Sousa. Intrusion-resilient middleware design and

validation. In H. Raghav Rao and S. Upadhyaya, editors, Information Assurance, Security and

Privacy Services (Handbooks in Information Systems: volume 4, pages 615–678. Emerald

Group Publishing, 2009.

[19] P. Verissimo, N. Neves, and M. Correia. Intrusion tolerant architectures: Concepts and design.

In R. de Lemos, C. Gacek, and A. Romanovsky, editors, Architecting Dependable Systems,

pages 3–36. Springer-Verlag LNCS 2677, 2003.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 62/63

[20] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks. In

Pro-ceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP’01),

pages 131–145, October 2001.

[21] Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis. An overlay architecture for high

quality VoIP streams. IEEE Transactions on Multimedia, 8(6):1250–1262, December 2006.

[22] A. Snoeren, K. Conley, and D. Gifford. Mesh-based content routing using XML. In

Proceedings of the ACM Symposium on Operating Systems Principles, pages 160–173,

October 2001.

[23] W. Dantas, A. Bessani, and M. Correia. Not quickly, just in time: Improving the timeliness

and reliability of control traffic in utility networks. In Proc. of the Workshop on Hot Topics in

System Dependability, June 2009.

[24] R. J. Perlman. Network Layer Protocols with Byzantine Robustness. Phd thesis, Massachusetts

Institute of Technology, Cambridge, MA, USA, 1988.

[25] R. Obelheiro and J. Fraga. A lightweight intrusion-tolerant overlay network. In Proceedings of

the 9th IEEE International Symposium on Object and Component-oriented Real-time

Distributed Computing, 2006.

[26] D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University

Press, 2003.

[27] The MASSIF Consortium. Deliverable D2.1.1: Scenario Requirements. Technical report,

2011.

[28] The MASSIF Consortium. Deliverable D5.4.1: Integration specifications. Technical report

2012.

MASSIF - FP7-257475

Architecture Document

© 2011-2013 MASSIF Project 63/63

Annex A Detailed Mapping of Modules and Interactions vs.

Workpackages

