
c©2010 Springer-Verlag. This is an author-created version of the work with DOI: 10.1007/978-
3-642-17245-8 4. The original publication is available at www.springerlink.com.
http://link.springer.com/chapter/10.1007%2F978-3-642-17245-8_4

Identification of Security Requirements in
Systems of Systems by Functional Security

Analysis

Andreas Fuchs and Roland Rieke

Fraunhofer Institute for Secure Information Technology (SIT)
Rheinstrasse 75, 64295 Darmstadt, Germany

{andreas.fuchs,roland.rieke}@sit.fraunhofer.de

Abstract. Cooperating systems typically base decisions on information
from their own components as well as on input from other systems.
Safety critical decisions based on cooperative reasoning however raise
severe concerns to security issues. Here, we address the security
requirements elicitation step in the security engineering process for
such systems of systems. The method comprises the tracing down of
functional dependencies over system component boundaries right onto
the origin of information as a functional flow graph. Based on this
graph, we systematically deduce comprehensive sets of formally defined
authenticity requirements for the given security and dependability
objectives. The proposed method thereby avoids premature assumptions
on the security architecture’s structure as well as the means by which
it is realised. Furthermore, a tool-assisted approach that follows the
presented methodology is described.

Key words: security requirements elicitation, systems of systems
security engineering, security analysis for vehicular communication
systems

1 Introduction

Architecting novel mobile systems of systems (SoS) poses new challenges to
getting the dependability and specifically the security requirements right as early
as possible in the system design process. Security engineering is one important
aspect of dependability [1]. The security engineering process addresses issues
such as how to identify and mitigate risks resulting from connectivity and how
to integrate security into a target architecture [2]. Security requirements need
to be explicit, precise, adequate, non-conflicting with other requirements and
complete [13].

A typical application area for mobile SoS are vehicular communication sys-
tems in which vehicles and roadside units communicate in ad hoc manner to
exchange information such as safety warnings and traffic information. As a co-
operative approach, vehicular communication systems can be more effective in
avoiding accidents and traffic congestion than current technologies where each

http://link.springer.com/chapter/10.1007%2F978-3-642-17245-8_4


2 Andreas Fuchs, Roland Rieke

vehicle tries to solve these problems individually. However, introducing depen-
dence of possibly safety-critical decisions in a vehicle on information from other
systems, such as other vehicles or roadside units, raises severe concerns to se-
curity issues. Security is an enabling technology in this emerging field because
without security some applications within those SoS would not be possible at
all. In some cases security is the main concern of the architecture [22].

The first step in the design of an architecture for a novel system of systems
is the requirements engineering process. With respect to security requirements
this process typically covers at least the following activities [17, 16, 15]

– the identification of the target of evaluation and the principal security goals
and the elicitation of artifacts (e.g. use case and threat scenarios) as well as
risk assessment

– the actual security requirements elicitation process
– a requirements categorisation and prioritisation, followed by requirements

inspection

In this paper we address the security requirements elicitation step in this
process. We present a model-based approach to systematically identify security
requirements for system architectures to be designed for cooperative applications
in a SoS context. Our contribution comprises the following distinctive features.

Identification of a Consistent and Complete Set of Authenticity Requirements.
We base our method on the following general assumption about the overall
security goal with respect to authenticity requirements:

For every safety-critical action in a system of systems, all information
that is used in the reasoning process that leads to this action has to be
authentic.

To achieve this, we first derive a functional model of a system by identification
of atomic actions and functional dependencies in a use case description. From
this model we generate a dependency graph with the safety-critical function
under consideration as root and the origins of decision relevant information as
leaves. Based on this graph, we deduce a set of authenticity requirements that
is comprehensive and defines the maximal set of authenticity requirements from
the given functional dependencies.

Security Mechanism Independence. The most common problem with security
requirements is, that they tend to be replaced with security-specific architectural
constraints that may unnecessarily constrain the choice of the most appropriate
security mechanisms [4].

In our approach we avoid to break down the overall security requirements to
requirements for specific components or communication channels prematurely.
So the requirements identified by this approach are independent of decisions
not only on concrete security enforcement mechanisms to use, but also on the
structure, such as hop-by-hop versus end-to-end security measures.



Identification of Security Requirements by Functional Security Analysis 3

Throughout this paper we use the following terminology taken from [1]: A
system is an entity that interacts with other entities, i.e., other systems. These
other systems are the environment of the given system. A system boundary is
the common frontier between the system and its environment. Such a system
itself is composed of components, where each component is yet another system.
Furthermore, in [1] the dependence of system A on system B represents the ex-
tent to which system A’s dependability is affected by that of system B. Our work
though focuses on purely functional aspects of dependence and omits quantita-
tive reasoning. For the approach proposed, we describe the function of such a
system by a functional model and treat the components as atomic and thus we do
not make preliminary assumptions regarding their inner structure. Rather, the
adaption to a concrete architecture is considered to be a task within a follow-up
refinement and engineering process.

The subsequent paper is structured as follows. Section 2 gives an overview of
the related work on security engineering and requirements identification method-
ologies. In Sect. 3 we introduce a scenario from the automotive domain that will
serve as use case throughout the rest of this text. Section 4 introduces the pro-
posed approach to requirements identification, exemplified by application on the
given use case. Section 5 presents an tool-assisted methodology that follows this
approach utilising the scenario. Finally, the paper ends with conclusions and an
outlook in Sect. 6.

2 Related Work

The development of new security relevant systems that interact to build new SoS
requires the integration of a security engineering process in the earliest stages of
the development life-cycle. This is specifically important in the development of
systems where security is the enabling technology that makes new applications
possible. There are several common approaches that may be taken, depending
on the system architect’s background.

In order to design a secure of vehicular communication system, an archi-
tect with a background in Mobile Adhoc Networks (MANETs) would probably
first define the data origin authentication [27] of the transmitted message. In a
next step he may reason about the trustworthiness of the transmitting system.
An architect with a background in Trusted Computing [7] would first require
for the transmitting vehicle to attest for its behaviour [25]. Advanced experts
may use the Trusted Platform Module (TPM) techniques of sealing, binding,
key restrictions and TPM-CertifyKey to validate the trustworthiness and bind
the transmitted data to this key [24]. A distributed software architect may first
start to define the trust zones. This would imply that some computational means
of composing slippery wheels with temperature and position happen in an un-
trusted domain. Results may be the timestamped signing of the sensor data and
a composition of these data at the receiving vehicle.

This shall only illustrate a few different approaches that might be taken
in a security engineering process for new SoS. Very different types of security



4 Andreas Fuchs, Roland Rieke

requirements are the outcome. Some of these leave attack vectors open, such as
the manipulation of the sending or receiving vehicle’s internal communication
and computation.

Another conclusion that can be derived from these examples is related to
premature assumptions about the implementation. Whilst in one case the vehi-
cle is seen as a single computational unit that can be trusted, in another case
it has to attest for its behaviour when sending out warnings. The trust zone
based analysis of the same use cases however requires for a direct communica-
tion link and cryptography between the sensors and the receiving vehicle and the
composition of data is moved to the receiver side. A direct result of falsely de-
fined system boundaries typically are security requirements that are formulated
against internal subsystems rather than the system at stake itself, To overcome
these problems several methods for security requirements elicitation have been
proposed.

A comprehensive concept for an overall security requirements engineering
process is described in detail in [16]. The authors propose a 9 step approach
called SQUARE (Security Quality Engineering Methodology). The elicitation of
the security requirements is one important step in the SQUARE process. In [15]
several concrete methods to carry out this step are compared. These methods are
based on misuse cases (MC), soft systems methodology (SSM), quality function
deployment (QFD), controlled requirements expression (CORE), issue-based in-
formation systems (IBIS), joint application development (JAD), feature-oriented
domain analysis (FODA), critical discourse analysis (CDA) as well as acceler-
ated requirements method (ARM). A comparative rating based on 9 different
criteria is also given but none of these criteria measures the completeness of the
security requirements elicited by the different methods.

A similar approach based on the integration of Common Criteria (ISO/IEC
15408) called SREP (Security Requirements Engineering Process) is described
in [17]. However the concrete techniques that carry out the security require-
ments elicitation process are given only very broadly. A threat driven method is
proposed but is not described in detail.

In [13] anti-goals derived from negated security goals are used to systemat-
ically construct threat trees by refinement of these anti-goals. Security require-
ments are then obtained as countermeasures. This method aims to produce more
complete requirements than other methods based on misuse cases. The refine-
ment steps in this method can be performed informally or formally.

In [4] different kinds of security requirements are identified and informal
guidelines are listed that have proven useful when eliciting concrete security
requirements. The author emphasises that there has to be a clear distinction
between security requirements and security mechanisms.

In [9] it is proposed to use Jackson‘s problem diagrams to determine security
requirements which are given as constraints on functional requirements. Though
this approach presents a methodology to derive security requirements from secu-
rity goals, it does not explain the actual refinements process, which leaves open,
the degree of coverage of requirements, depending only on expert knowledge.



Identification of Security Requirements by Functional Security Analysis 5

In [10–12] Hatebur et al. describe a security engineering process based on se-
curity problem frames and concretised security problem frames. The two kinds
of frames constitute patterns for analysing security problems and associated
solution approaches. They are arranged in a pattern system with formal precon-
ditions and postconditions for the frames which makes dependencies between
them explicit. A method to use this pattern system to analyse a given secu-
rity problem and find solution approaches is described. The focus of [10] is on
anonymity, while [11] focusses on confidential data transmission, and [12] ad-
dresses accountability by logging and the steps of the process.

In [14] actor dependency analysis is used to identify attackers and potential
threats in order to identify security requirements. The so called i∗ approach facil-
itates the analysis of security requirements within the social context of relevant
actors. In [6] a formal framework is presented for modelling and analysis of secu-
rity and trust requirements at an organisational level. Both of these approaches
target organisational relations among agents rather than functional dependence.
Those approaches might be utilised complementary to the one presented in this
paper, as the output of organisational relations analysis may be an input to our
functional security analysis.

Though all of the approaches may lead to a sufficient level of security for the
designed architecture, there is no obvious means by which they can be compared
regarding the security requirements that they fulfil. The choice of the appropriate
abstraction level and system boundaries constitutes a rather big challenge to
SoS architecture design, especially with respect to SoS applications like the one
presented here.

The method described in Sect. 4 in this paper is based on the work presented
in [5], whereas the tool-assisted methodology that builds on this approach pre-
sented in Sect. 5 is a new contribution of this work. We are targeting here the
identification of a consistent and complete set of authenticity requirements. For
an analysis of privacy-related requirements with respect to vehicular communi-
cation systems please refer to [26].

3 Vehicular Communication Systems Scenario

The derivation of security requirements in general, especially the derivation of
authenticity requirements represents an essential building block for system de-
sign. With an increase in the severity of safety-relevant systems’ failures the
demand increases for a systematic approach of requirements derivation with a
maximum coverage. Also during the derivation of security requirements, no pre-
assumptions should be made about possible implementations. We will further
motivate this with respect to the requirements derivation process with an exam-
ple from the field of vehicle-to-vehicle communications.

3.1 Example Use Cases

In order to illustrate our approach we use a scenario taken from the project
EVITA (E-Safety Vehicle Intrusion Protected Applications) [23]. The scenario is



6 Andreas Fuchs, Roland Rieke

based on an evaluation of security relevant use cases for vehicular communication
systems in which vehicles and roadside units communicate in an ad hoc manner
to exchange information such as safety warnings and traffic information. Op-
tionally, local danger warning information can also be provided to in-vehicular
safety concepts for further processing.

Our example system consists of vehicles V1, . . . , Vn. Each Vi has its driver Di

and is equipped with an Electronic Stability Protection (ESP) sensor ESP i and
a Global Positioning System (GPS) sensor GPS i. Within each vehicle’s on-board
network, the scenario involves a communication unit (CU) CU i for sending and
receiving messages. Furthermore, a connection to a Human Machine Interface
(HMI) HMI i is required for displaying the warning message, e.g. via audio signals
or on a display. Furthermore, the example system includes a roadside unit (RSU)
that can send cooperative awareness messages cam. For simplicity reasons we
assume that the same information is provided by all roadside units in the system,
so we can abstract from the individual entity. Our vehicle-to-vehicle scenario is
based on the following use cases:

Use case 1 A roadside unit broadcasts a cooperative awareness message.
Use case 2 A vehicle’s ESP sensor recognises that the ground is very slippery

when accelerating in combination with a low temperature. In order to warn
successive vehicles about a possibly icy road, the vehicle uses its communi-
cation unit to send out information about this danger including the GPS
position data indicating where the danger was detected.

Use case 3 A vehicle receives a cooperative awareness message, such as a warn-
ing about an icy road at a certain position, from a roadside unit or another
vehicle. It compares the information to its own position and heading and
signals the driver a warning if the dangerous area lies up front.

Use case 4 A vehicle receives a cooperative awareness message. It compares the
information to its own position and heading and retransmits the warning,
given that the position of this occurrence is not too far away.

For local danger warning applications, at least two entities are involved,
namely the vehicle receiving a critical warning message and the entity sending
such a message. The entity that sends out the message can be another vehicle,
a roadside unit or traffic light, or an infrastructure based server. The scenario
uses the actions described in table 1.

4 Functional Security Analysis

The approach described in the following can be decomposed into three basic
steps. The first one is the derivation of the functional model from the use case
descriptions in terms of an action oriented system. In a second step the system
at stake is defined and possible instantiations of the first functional model are
elaborated. In a third and final step, the actual requirements are derived in a
systematic way, resulting in a consistent and complete set of security require-
ments.



Identification of Security Requirements by Functional Security Analysis 7

Table 1. Actions for the example system

Action Explanation

send(cam(pos)) A roadside unit broadcasts a cooperative awareness mes-
sage cam concerning a danger at position pos.

sense(ESP i, sW) The ESP sensor of vehicle Vi senses slippery wheels (sW).
pos(GPS i, pos) The GPS sensor of vehicle Vi computes its position.
send(CU i, cam(pos)) The communication unit CU i of vehicle Vi sends a coop-

erative awareness message cam concerning the assumed
danger based on the slippery wheels measurement for po-
sition pos.

rec(CU i, cam(pos)) The communication unit CU i of vehicle Vi receives a
cooperative awareness message cam for position pos from
another vehicle or a roadside unit.

fwd(CU i, cam(pos)) The communication unit CU i of vehicle Vi forwards a
cooperative awareness message cam for position pos.

show(HMI i,warn) The human machine interface HMI i of Vehicle Vi shows
its driver a warning warn with respect to the relative
position.

4.1 Functional Model

Information flow between systems and system components is highly complex,
especially given that a system can evolve via the replacement of its components.
Consequently, an important aspect of security evaluation is the analysis of the
potential information flows. We use the analysis of the potential information
flows to derive the dependencies for the functional model.

For the description of the functional model from the use cases an action-
oriented approach is chosen. The approach is based on the work from [18]. For
reasons of simplicity and readability the formal description of the model is omit-
ted here and a graphical representation is used to illustrate the behaviour of the
evaluation target.

A functional model can be derived from a use case description by identify-
ing the atomic actions in the use case description. These actions are set into
relation by defining the functional flow among them. This action oriented ap-
proach considers possible sequences of actions (control flow) and information
flow (input/output) between interdependent actions.

In the case of highly distributed systems and especially a distributed system
of distributed systems, it is very common that use cases do not cover a complete
functional cycle throughout the whole system under investigation. Rather only
certain components of the system are described regarding their behaviour. This
must be kept in mind when deriving the functional model. In order to clarify
this distinction, functional models that describe only parts of the overall system
behaviour will be called functional component model.

Figures 1(a) and 1(b) show functional component models for a roadside unit
and a vehicle respectively. These models are derived from the example use cases



8 Andreas Fuchs, Roland Rieke

RSU

send(cam(pos))

cam

(a) Roadside Unit

Vehicle i

sense(ESPi,sW)

pos(GPSi,pos)

rec(CUi, cam(pos))

send(CUi,cam(pos))

show(HMIi,warn)

fwd(CUi, cam(pos))

camcam

(b) Vehicle

Fig. 1. Functional component models

given in Sect. 3.1. The functional flow arrows outside of the vehicle’s boundaries
refer to functional flows between different instances of the component, whilst
internal flow arrows refer to flows within the same instance of the component.
For the given example, the external flows represent data transmission of one
system to another, whilst the internal flows represent communication within a
single system.

4.2 System of Systems Instances

Based on the functional component model, one may now start to reason about
the overall system of systems which consists of a number of instances of the
functional components. The synthesis of the internal flow between the actions
within the component instances and the external flow between systems (in this
case vehicles and roadside units) builds the global system of systems behaviour.
In order to model instances of the global system of systems, all structurally
different combinations of component instances shall be considered. Isomorphic
combinations can be neglected. Finally, all possible instances may be regrouped
and the system’s boundary actions (denoting the actions that are triggered by
or influence the system environment) have to be identified. These will be the
basis for the security requirements definition in the next step.

In Fig. 2 an example for a possible SoS instance combining use cases 1 and
3 comprising a roadside unit and a vehicle is presented. In this SoS instance
vehicle Vw receives cooperative awareness message from a RSU.

4.3 Functional Security Requirements Identification

The set of possible instantiations of the functional component model is used in
a next step to derive security requirements. First, the boundary actions of the
system model instances are determined. Let the term boundary action refer to
the actions that form the interaction of the internals of the system with the
outside world. These are actions that are either triggered by occurrences outside
of the system or actions that involve changes to the outside of the system.



Identification of Security Requirements by Functional Security Analysis 9

RSU

send(cam(pos))

Vehicle w

sense(ESPw ,sW)

pos(GPSw ,pos)

rec(CUw , cam(pos))

send(CUw ,cam(pos))

show(HMIw ,warn)

fwd(CUw , cam(pos))
cam

Fig. 2. Vehicle w receives warning from RSU

With the boundary actions being identified, one may now follow the func-
tional graph backwards. Beginning with the boundary actions by which the
system takes influence on the outside, we may propagate backwards along the
functional flow. These backwards references basically describe the functional de-
pendencies of actions among each other. From the functional dependency graph
we may now identify the end points - the boundary actions that trigger the
system behaviour that depends on them. Between these and the corresponding
starting points, the requirement exists that without such an action happening as
input to the system, the corresponding output action must not happen as well.
From this we formulate the security goal of the system at stake:

Whenever a certain output action happens, the input actions that presumably
led to it must actually have happened.

Example 1 (Boundary Actions and Dependencies). In the SoS instance in Fig. 2
we are interested to identify the authenticity requirements for the boundary
action show(HMI w,warn). Following backwards along the functional flow we
derive that the output action show(HMI w,warn) is depending on the input
actions pos(GPSw,pos) of vehicle w and send(cam(pos)) of the RSU .

These dependencies shall now be enriched by additional parameters. In par-
ticular, it shall be identified which is the entity that must be assured of the
respective authenticity requirements. With these additional parameters set, we
may utilise the following definition of authenticity from the formal framework of
Fraunhofer SIT [8] to specify the identified requirements.

Definition 1. auth(a, b, P ): Whenever an action b happens, it must be authentic
for an Agent P that in any course of events that seem possible to him, a certain
action a has happened (for a formal definition see [8]).

Example 2 (Derive Requirements from Dependencies). For the dependencies in
Example 1 this leads to the following authenticity requirements with respect to
the action show(HMI w,warn):

– It must be authentic for the driver of vehicle w that the relative position of
the danger he/she is warned about is based on correct position information
of his/her vehicle. Formally: auth(pos(GPSw,pos), show(HMI w,warn), Dw)



10 Andreas Fuchs, Roland Rieke

– It must be authentic for the driver of vehicle w that the roadside unit issued
the warning. Formally: auth(send(cam(pos)), show(HMI w,warn), Dw)

It shall be noted that the requirements elicitation process in this case utilises
positive formulations of how the system should behave, rather than preventing
a certain malicious behaviour. Also it has to be stressed that this approach
guarantees for the system / component architect to be free regarding the choice
of concepts during the security engineering process.

This manual analysis may reveal that certain functional dependencies are
presented only for performance reasons. This can be valuable input for the ar-
chitects as well, and sometimes reveals premature decisions about mechanisms
that were already done during the use case definition phase.

This approach cannot prevent the specification of circular dependencies
among systems’ actions but usually this is avoided for well-defined use cases.
This actually originates from the fact that every action represents a progress in
time. Accordingly an infinite loop among actions in the system would indicate
that the system described will not terminate. The requirements derivation pro-
cess will however highlight every functional dependency that is described within
the use cases. Accordingly, when the use case description incorporates more than
the sheer safety related functional description, additional requirements may arise.
Therefore, the requirements have to be evaluated towards their meaning for the
system’s safety. Whilst one can be assured not to have missed any safety relevant
requirement, this is a critical task because misjudging a requirement’s relevance
would induce security holes. Once an exhaustive list of security requirements is
identified, a requirements categorisation and prioritisation process can evaluate
them according to a maximum acceptable risk strategy.

4.4 Formalisation

Formally, the functional flow among actions can be interpreted as an ordering
relation ζi on the set of actions Σi in a certain system instance i. To derive
the requirements the reflexive transitive closure ζ∗i is constructed. In the follow-
ing we assume that the functional flow graph is sequential and free of loops,
as every action can only depend on past actions. Accordingly, the relation is
anti-symmetric. ζ∗i is a partial order on Σi, with the maximal elements maxi
corresponding to the outgoing boundary actions and the minimal elements mini
corresponding to the incoming boundary actions. After restricting ζ∗i to these
elements χi = {(x, y) ∈ Σi × Σi | (x, y) ∈ ζ∗i ∧ x ∈ mini ∧ y ∈ maxi} this
new relation represents the authenticity requirements for the corresponding sys-
tem instance: For all x, y ∈ Σi with (x, y) ∈ χi : auth(x, y, stakeholder(y)) is
a requirement. Accordingly the union of all these requirements for the different
instances poses the set of requirements for the whole system. This set can be
reduced by eliminating duplicate requirements or by use of first-order predicates
for a parameterised notation of similar requirements.

Example 3 (Formal Derivation of Authenticity Requirements). For the given sys-
tem model instances, we may now identify the authenticity requirements for the



Identification of Security Requirements by Functional Security Analysis 11

action show(HMI w,warn) using the actions and abbreviations defined in table 1.
Graphically, this could be done by reversing the arrows and removing the dotted
arrows and boxes.

Vehicle 1

sense(ESP1,sW)

pos(GPS1,pos)

rec(CU1, cam(pos))

send(CU1,cam(pos))

show(HMI1,warn)

fwd(CU1, cam(pos))

Vehicle w

sense(ESPw ,sW)

pos(GPSw ,pos)

rec(CUw , cam(pos))

send(CUw ,cam(pos))

show(HMIw ,warn)

fwd(CUw , cam(pos))

Fig. 3. Vehicle w receives a warning from vehicle 1

Figure 3 shows an example for a possible SoS instance combining use cases 2
and 3 comprising two vehicles. In this SoS instance vehicle Vw receives coopera-
tive awareness message from vehicle V1. Formally, for the SoS instance depicted
in Fig. 3, we can analyse:

ζ1 ={(sense(ESP1, sW), send(CU 1, cam(pos))),

(pos(GPS 1,pos), send(CU 1, cam(pos))),

(send(CU 1, cam(pos)), rec(CU w, cam(pos))),

(pos(GPSw,pos), show(HMI w,warn)),

(rec(CU w, cam(pos)), show(HMI w,warn))}
ζ∗1 =ζ1 ∪ {(x, x) | x ∈ Σ} ∪ {

(sense(ESP1, sW), rec(CU w, cam(pos))),

(sense(ESP1, sW), show(HMI w,warn)),

(pos(GPS 1,pos), rec(CU w, cam(pos))),

(pos(GPS 1,pos), show(HMI w,warn)),

(send(CU 1, cam(pos)), show(HMI w,warn))}
χ1 ={(sense(ESP1, sW), show(HMI w,warn)),

(pos(GPS 1,pos), show(HMI w,warn)),

(pos(GPSw,pos), show(HMI w,warn))}
For further analysis we consider a possible SoS instance combining use cases

2, 3 and 4 comprising three vehicles as shown in Fig. 4. In this SoS instance
vehicle V2 forwards warnings from vehicle V1 to vehicle Vw.

An analysis of the SoS instance with 3 vehicles as depicted in Fig. 4 will
result in:

χ2 = χ1 ∪ {(pos(GPS 2,pos), show(HMI w,warn))}
In the given SoS model the forwarding of a message is restricted by a position

based forwarding policy with respect to the distance from the danger that is being



12 Andreas Fuchs, Roland Rieke

Vehicle 1 Vehicle 2

sense(ESP2,s2)

pos(GPS2,pos)

rec(CU2, cam(pos))

send(CU2,cam(pos))

show(HMI2,warn)

fwd(CU2, cam(pos))

Vehicle w

Fig. 4. Vehicle 2 forwards warnings (vehicles 1, 2 and w are instances from Fig. 1)

warned about and the time of issue of the danger sensing. We could therefore
assume a maximal number of system instances involved general enough to cover
all these cases, e.g. by utilising a description in a parameterised way. An analysis
for an SoS instance with i vehicles will result in:

χi = χi−1 ∪ {(pos(GPS i,pos), show(HMI w,warn))}

The first three elements in each χi will obviously always be the same in all
instances of the example. The rest of the elements can be expressed in terms of
first-order predicates. This leads to the following authenticity requirements for
all possible system instances for the action show(HMI w,warn):

auth(pos(GPSw,pos), show(HMI w,warn), Dw) (1)

auth(pos(GPS 1,pos), show(HMI w,warn), Dw) (2)

auth(sense(ESP1, sW), show(HMI w,warn), Dw) (3)

∀x ∈ Vforward : auth(pos(GPSx,pos), show(HMI w,warn), Dw) (4)

Vforward denotes the set of vehicles per system instance, that forward the
warning message.

As mentioned above, the resulting requirements have to be evaluated regard-
ing their meaning for the functional safety of the system. For the first three
requirements the argumentation is very straight forward regarding why they
have to be fulfilled:

1. It must be authentic for the driver that the relative position of the danger
he/she is warned about is based on correct position information of his/her
vehicle.

2. It must be authentic for the driver that the position of the danger he/she is
warned about is based on correct position information of the vehicle issuing
the warning.

3. It must be authentic for the driver that the danger he/she is warned about
is based on correct sensor data.

The last requirement (4) however must be further evaluated. Studying the use
case, we see that this functional dependency originates from the position based



Identification of Security Requirements by Functional Security Analysis 13

forwarding policy. This policy is introduced for performance reasons, such that
bandwidth is saved by not flooding the whole network. Braking this requirement
would therefore result either in a smaller or in a larger broadcasting area. As bad
as those cases may be, they cannot cause the warning of a driver that should
not be warned. Therefore we do not consider requirement (4) to be a safety
related authenticity requirement. It can be considered a requirement regarding
availability by preventing the denial of a service or unintended consumption of
bandwidth.

In practice, the method described here has been applied in the project EVITA
[23] to derive authenticity requirements for the development of a new automotive
on-board architecture utilising vehicle-to-vehicle and vehicle-to-infrastructure
communication. A total of 29 authenticity requirements have been elicited by
means of a system model comprising 38 component boundary actions with 16
system boundary actions comprising 9 maximal and 7 minimal elements.

5 Tool-assisted Requirements Identification

The method for deriving authenticity requirements as described in the previous
section relies on manual identification and processing only. In this section we
will give an example on how to use the capabilities of existing tools, such as the
SH verification tool [20] in order to facilitate the process especially for larger
models.

As the previous section explained, the basis for the systematic identification
of authenticity requirements for a given system is the relations between maxima
and minima of the partial order of functional dependence. In this approach we
first identified the direct relations of adjacent actions, then built the reflexive
transitive closure and finally extracted those relations from this set that exist
between maxima and minima of this partial order.

The tool-assisted approach will proceed in reverse order. First we will identify
the maxima and minima of the partial order – without deriving the actual partial
order – and then we will identify combinations of maxima and minima that are
related by functional dependence. This approach will be illustrated with a simple
example first, to provide the general idea and then with a more complex example,
in order to demonstrate the application of abstraction techniques to cover the
analysis of non-trivial systems.

5.1 Formal Modelling Technique

In order to analyse the system behaviour with tool support, an appropriate for-
mal representation has to be chosen. In our approach, we choose an operational
finite state model of the behaviour of the given vehicular communication scenario
that is based on Asynchronous Product Automata (APA), a flexible operational
specification concept for cooperating systems [20]. An APA consists of a fam-
ily of so called elementary automata communicating by common components of
their state (shared memory). We now introduce the formal modelling techniques
used, and illustrate the usage by our collaboration example.



14 Andreas Fuchs, Roland Rieke

Definition 2 (Asynchronous Product Automaton (APA)).
An Asynchronous Product Automaton consists of

– a family of state sets Zs, s ∈ S,
– a family of elementary automata (Φt, ∆t), t ∈ T and
– a neighbourhood relation N : T→ P(S).

S and T are index sets with the names of state components and of elementary
automata and P(S) is the power set of S.
For each elementary automaton (Φt, ∆t) with Alphabet Φt, its state transition
relation is

∆t ⊆ ��s∈N(t)(Zs)× Φt ×��s∈N(t)(Zs).

For each element of Φt the state transition relation ∆t defines state transitions
that change only the state components in N(t). An APA’s (global) states are
elements of ��s∈S(Zs). To avoid pathological cases it is generally assumed that
N(t) 6= ∅ for all t ∈ T.
Each APA has one initial state q0 = (q0s)s∈S ∈ ��s∈S(Zs).
In total, an APA A is defined by

A = ((Zs)s∈S, (Φt, ∆t)t∈T, N, q0).

An elementary automaton (Φt, ∆t) is activated in a state p = (ps)s∈S ∈
��s∈S(Zs) as to an interpretation i ∈ Φt, if there are (qs)s∈N(t) ∈ ��s∈N(t)(Zs)
with ((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t.
An activated elementary automaton (Φt, ∆t) can execute a state transition and
produce a successor state

q = (qr)r∈S ∈ ��s∈S(Zs), if

qr = pr for r ∈ S \N(t) and ((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t.

The corresponding state transition is (p, (t, i), q).

For the following analysis by model checking and abstraction we use a re-
duced version of the functional component model of a vehicle that corresponds
to the functional model illustrated in Fig. 1(b) but does not contain the forward
action.

Example 4 (Finite State Model of the Collaboration Components). The vehicle
component model described in Sect. 4.1 is specified for the proposed analysis
method using the following APA state components for each of the vehicles:

Si = {espi, gpsi, hmi i, busi,net}, with

Zespi
= P({sW}),

Zgpsi = P({pos1, pos2, pos3, pos4}),
Zhmii = P({warn}),
Zbusi = P(Zesp ∪ Zgps ∪ Zhmi)) and

Znet = P({cam} × {V1, V2, V3, V4} × Zgps).



Identification of Security Requirements by Functional Security Analysis 15

The inputs to the vehicle model are represented by the state components
espi and gpsi. espi represents input measurements taken by the ESP sensor.
A pending data set here will trigger the sense action for slippery wheels. gpsi
represents the derivation of GPS position information. Pending data here will
trigger the pos action for retrieving the current position of the vehicle.

The outputs of the vehicle model are represented by the state component
hmi i that represents the HMI interface’s display, showing (warning) information
to the driver. The show action will push information to this medium.

Internally the vehicle component has an additional state component busi
representing its internal communication bus. It is filled with information from
the rec, sense and pos action and read by the send and forward action.

Finally, net is a shared state component between all the vehicles that repre-
sents the wireless communication medium. A pending message here will trigger
the rec action of the component. The actions send and forward will push a
message into this medium.

Vehicle i

Vi sense

Vi pos

Vi send

Vi show Vi rec

gpsi

espi

busi net

hmi i

Fig. 5. APA model of a vehicle

The elementary automata Ti = {Vi pos, Vi sense, Vi rec, Vi send , Vi show} rep-
resent the possible actions that the systems can take. These specifications are
represented in the data structures and initial configuration of the state compo-
nents in the APA model. Elementary automata and state components of the
APA model of a vehicle are depicted in Fig. 5. The lines in Fig. 5 between state
components and elementary automata represent the neighbourhood relation.

The state transition relation for the APA model of a vehicle is given by:

∆Vi sense ={((espi, busi), (esp), (espi\{esp}, busi ∪ {esp}))
∈ (Zespi

× Zbusi)× ESP × (Zespi
× Zbusi) | esp ∈ espi}

∆Vi pos ={((gpsi, busi), (gps), (gpsi\{gps}, busi ∪ {gps})
∈ (Zgpsi × Zbusi)×GPS × (Zgpsi × Zbusi) | gps ∈ gpsi}



16 Andreas Fuchs, Roland Rieke

∆Vi send ={((busi,net), (esp, gps,msg), (busi\{esp, gps},net ∪ {msg}))
∈ (Zbusi × Znet)× (ESP ×GPS ×NET )× (Zbusi × Znet) |
esp ∈ busi ∧ gps ∈ busi ∧msg = (cam, gps)}

∆Vi rec ={((net , busi), (msg , gps,warn), (net \{msg}, busi\{gps} ∪ {warn}))
∈ (Znet × Zbus)× (NET ×GPS ×HMI )× (Znet × Zbusi) |
msg ∈ net ∧ gps ∈ busi ∧ distance(msg , gps) < range}

∆Vi show ={((busi, hmi i), (warn), (busi\{warn}, hmi ∪ {warn}))
∈ (Zbusi × Zhmii)×HMI × (Zbusi × Zhmii) | warn ∈ busi}

The model is parameterised by i except for the shared state component net .

5.2 Formal Representation of System of Systems Instances

The SoS instance that we investigate first includes two vehicle components that
are assumed to be within the wireless transmission range similar to the example
given in Fig. 3. In this SoS instance vehicle V2 receives cooperative awareness
message from vehicle V1. Therefore the net components are mapped together,
such that outputs of each one of the vehicles are input for the other vehicle.
The rest of the inputs (Sensors and GPSs) as well as outputs (displays) are not
internal parts of the system but filled and read by the systems environment. It
should be noted that timing behaviour is not included in the model, because we
solely want to retrieve functional dependencies. As we want to instantiate V1 to
perform use Case 2 and V2 to perform use Case 3, we set

– V1’s sensor input to a measurement of slippery wheels sW,
– V1’s GPS input to some position pos1 that is within warning range of V2 and
– V2’s GPS input to some position pos2 that is within warning range of V1.

Example 5 (Finite State Model of an SoS Instance with 2 Vehicles).
The state components for this instance are

S = {esp1, pos1, bus1, hmi1, esp2, pos2, bus2, hmi2,net}

and the set of elementary automata is

T = {V1 sense, V1 pos, V1 send , V1 rec, V1 show ,

V2 sense, V2 pos, V2 send , V2 rec, V2 show}.

The neighbourhood relation N(t) can be read directly from the graphical
illustration in Fig. 6. The initial state for our simulation is defined as:

q0 =(q0 esp1
, q0 gps1 , q0 bus1 , q0 hmi1 , q0 esp2

, q0 gps2 , q0 bus2 , q0 hmi2 , q0 net)

=({sW}, {pos1}, ∅, ∅, ∅, {pos2}, ∅, ∅, ∅).

For example (q0, (V1 sense, sW), (∅, {pos1}, {sW}, ∅, ∅, {pos2}, ∅, ∅, ∅)) is a
state transition of this SoS instance.



Identification of Security Requirements by Functional Security Analysis 17

Vehicle 1

V1 sense

V1 pos

V1 send

V1 show V1 rec

gps1

esp1

bus1 net

hmi1

Vehicle 2

V2 send V2 sense

V2 pos

V2 showV2 rec

gps2

esp2

bus2

hmi2

Fig. 6. APA model of a SoS instance with 2 vehicles

5.3 Computation of System of Systems Behaviour

Formally, the behaviour of our operational APA model of the vehicular com-
munication system is described by a reachability graph. In the literature this is
sometimes also referred to as labelled transition system (LTS).

Definition 3 (Reachability graph).
The behaviour of an APA is represented by all possible coherent sequences
of state transitions starting with initial state q0. The sequence (q0, (t1, i1), q1)
(q1, (t2, i2), q2) . . . (qn−1, (tn, in), qn) with ik ∈ Φtk represents one possible se-
quence of actions of an APA.

State transitions (p, (t, i), q) may be interpreted as labelled edges of a directed
graph whose nodes are the states of an APA: (p, (t, i), q) is the edge leading from
p to q and labelled by (t, i). The subgraph reachable from the node q0 is called
the reachability graph of an APA.

We used the Simple Homomorphism (SH) verification tool [20] to analyse the
functional component model for different concrete instantiations of the model.
The tool has been developed at the Fraunhofer-Institute for Secure Information
Technology. The applied specification method based on Asynchronous Product
Automata is supported by this tool. The tool manages the components of the
model, allows to select alternative parts of the specification and automatically
glues together the selected components to generate a combined model of the
APA specification. It provides components for the complete cycle from formal
specification to exhaustive validation as well as visualisation and inspection of
computed reachability graphs and minimal automata. The tool provides an ed-
itor to define homomorphisms on action languages, it computes corresponding
minimal automata [3] for the homomorphic images and checks simplicity of the
homomorphisms. If it is required to inspect some or all paths of the graph to
check for the violation of a security property, as it is usually the case for liveness
properties, then the tool’s temporal logic component can be used. Temporal logic
formulae can also be checked on the abstract behaviour (under a simple homo-
morphism). The method for checking approximate satisfaction of properties fits
exactly to the built-in simple homomorphism check [20].



18 Andreas Fuchs, Roland Rieke

Computation of SoS Instance’s Behaviour. Starting with the analysis, we
define a representation of the component behaviour in preamble language of the
SH verification tool according to the use cases. Then for a first simple example,
we instantiated it twice – with a warning vehicle V1 and a vehicle that receives
the warning V2, similar to Fig. 6. After an initial state is selected, the reachability
graph is automatically computed by the SH verification tool. Fig. 7 shows the
reachability graph resulting from the analysis of the model instance in Fig. 6.
Please note that the tool prints the state q0 as M -1.

M-1
start:

M-7

M-8 M-12

M-9

M-10

M-11

M-13

M-2

M-4

M-6

M-3

M-5

V2_show

V1_sense

V1_pos

V2_pos

V2_pos

V1_pos V1_sense

V1_sense

V2_pos

V1_sense V1_pos

V1_pos

V2_rec

V2_pos
V2_pos

V1_send V2_rec

V1_send

V2_pos

Fig. 7. Reachability graph of SoS instance with two vehicles in the SH verification tool

5.4 Evaluating the Functional Dependence Relation

Starting from the model of the system components and their instantiations the
reachability analysis provides a graph with serialised traces of actions in the
system. In order to identify the minima of such a system, we look at the initial
state M-1 of the reachability graph. Every action that leaves the initial state
on any of the traces is obviously a minimum, because it does not functionally
depend on any other action to have occurred before. In order to identify the
maxima we investigate those actions leading to the dead state from any trace.
These actions do not trigger any further action after they have been performed.

Example 6 (The SH verification tool’s result for Example 5).
The minima of this analysis: The corresponding maxima:

M−1
V1 sense M−4
V1 pos M−3
V2 pos M−2

M−12 V2 show
M−13+
+++ dead +++

Since we now have identified the maxima and minima of the partial or-
der of functionally dependent actions, we must evaluate which of these maxima
have a functional dependence relation. For this simple example, it can easily
be seen from the reachability graph, that the maximum only occurs after all
the minima have occurred in each of the traces, i.e. the maximum depends



Identification of Security Requirements by Functional Security Analysis 19

on all the identified minima. Accordingly, the simple example has the follow-
ing set of requirements: auth(V1 sense, V2 show , D2), auth(V1 pos, V2 show , D2),
auth(V2 pos, V2 show , D2).

5.5 Abstraction Based Verification Concept

Vehicle 1 Vehicle 2net1

Vehicle 3 Vehicle 4net2

Fig. 8. Model for SoS instance with four vehicles

In order to further demonstrate our approach for a more complex scenario, a
second example of a SoS instance that includes four vehicles – two pairs of two
vehicles, each pair within communication range but out of range from the other
pair, performing the same scenario each (V1 warns V2 and V3 warns V4) – can
be seen in Fig. 8 with the corresponding reachability graph in Fig. 9.
The minima of this analysis: The corresponding maxima:

M−1
V1 sense M−7
V3 sense M−6
V1 pos M−5
V2 pos M−4
V3 pos M−3
V4 pos M−2

M−168 V2 show
M−167 V4 show
M−169+
+++ dead +++

M-58

M-72

M-126

M-85

M-100M-114

M-147

M-20

M-26 M-43

M-46

M-35

M-50

M-83

M-96

M-142

M-110

M-121M-134

M-157

M-41

M-49 M-66

M-70

M-60

M-75

M-135

M-141

M-162

M-151

M-154M-160

M-168

M-94

M-104M-118

M-122

M-116

M-128

M-86

M-99

M-146

M-113

M-124M-136

M-159

M-44

M-51 M-68

M-73

M-61

M-77

M-111

M-120

M-155

M-133

M-140M-150

M-164

M-67

M-76 M-93

M-97

M-88

M-103M-115

M-125

M-158

M-137

M-145M-153

M-165

M-69

M-78 M-95

M-101

M-89

M-105

M-152

M-156

M-167

M-161

M-163M-166

M-169

M-119

M-129M-139

M-143

M-138

M-148

M-14

M-29

M-82

M-38

M-55 M-65

M-109

M-2 M-6

M-9

M-3

M-12

M-37

M-54

M-108

M-64

M-81 M-92

M-132

M-4

M-11 M-18

M-28

M-16

M-32 M-33

M-47

M-102

M-59

M-74 M-87

M-127

M-7

M-8 M-22

M-23

M-13

M-25

M-57

M-71

M-123

M-84

M-98M-112

M-144

M-17

M-24 M-40

M-45

M-34

M-48

M-36

M-53

M-107

M-63

M-80 M-91

M-131

M-5

M-10 M-21

M-27

M-15

M-31

M-62

M-79

M-130

M-90

M-106M-117

M-149

M-19

M-30 M-42

M-52

M-39

M-56

M-1
start:

V4_positionV3_positionV2_positionV1_position V3_senseV1_sense

V1_sense V3_senseV1_positionV2_positionV3_positionV4_position V1_sense V3_senseV1_positionV2_positionV4_position V3_position V1_sense V3_senseV1_positionV4_position V3_position V2_position V1_sense V3_senseV4_position V3_position V2_positionV1_positionV1_senseV4_position V3_position V2_position V1_position V3_sense

V3_senseV2_positionV3_position V1_position V1_senseV1_positionV2_positionV3_positionV1_sense V3_senseV2_positionV3_position V1_sense V3_senseV1_positionV3_position V1_sense V3_senseV1_positionV2_position V4_position V3_senseV2_position V1_position V4_position V1_senseV1_positionV2_position V3_sendV4_position V1_sense V3_senseV2_positionV4_position V1_sense V3_senseV1_position V4_position V3_position V3_senseV1_positionV4_position V3_position V1_senseV1_positionV4_position V3_position V1_sense V3_senseV4_position V3_position V2_position V3_senseV1_sendV4_position V3_position V2_position V1_senseV4_position V3_position V2_positionV1_position

V2_position V1_positionV3_positionV3_senseV3_position V1_position V3_senseV2_positionV1_position V3_senseV2_positionV3_position V1_send V1_senseV2_positionV3_position V1_senseV1_positionV3_position V1_senseV1_positionV2_position V3_sendV1_sense V3_senseV3_positionV1_sense V3_senseV2_positionV1_sense V3_senseV1_position V4_position V2_position V1_position V3_sendV4_position V3_senseV1_positionV4_position V3_senseV2_position V1_sendV4_position V1_senseV2_position V3_sendV4_position V1_senseV1_position V3_sendV4_position V1_senseV1_positionV2_position V4_recV4_position V1_sense V3_sense V4_position V3_position V1_positionV4_position V3_position V3_senseV1_sendV4_position V3_position V1_senseV4_position V3_position V2_position V1_sendV4_position V3_position V2_position V3_senseV2_rec

V1_positionV3_position V2_positionV3_position V1_sendV2_positionV1_position V3_sendV3_senseV1_position V3_senseV3_position V1_sendV3_senseV2_position V1_send V3_senseV2_positionV3_position V2_recV1_senseV3_positionV1_senseV2_position V3_sendV1_senseV1_position V3_send V1_senseV1_positionV2_position V4_recV1_senseV3_sense V4_position V1_position V3_sendV4_position V2_position V3_send V1_sendV4_position V2_position V1_position V4_recV4_position V3_senseV1_send V4_position V3_senseV2_position V2_recV4_position V1_senseV3_send V4_position V1_senseV2_position V4_recV4_position V1_senseV1_position V4_recV4_position V1_senseV1_positionV2_positionV4_position V3_position V1_sendV4_position V3_position V3_senseV2_recV4_position V3_position V2_positionV2_recV4_position V3_position V2_position V3_sense

V3_positionV1_send V1_position V3_sendV2_positionV1_send V3_send V2_position V3_positionV2_rec V2_positionV1_position V4_recV3_senseV1_send V3_senseV3_positionV2_rec V3_senseV2_positionV2_rec V3_senseV2_position V3_positionV1_sense V3_send V1_sense V2_positionV4_recV1_sense V1_position V4_rec V1_sense V1_positionV2_positionV4_warnV4_positionV3_sendV1_send V4_positionV1_position V4_rec V4_positionV2_positionV1_send V4_recV4_positionV2_position V3_sendV2_rec V4_positionV2_positionV1_positionV4_positionV3_senseV2_rec V4_positionV3_senseV2_position V4_positionV1_sense V4_rec V4_positionV1_sense V2_position V4_positionV1_sense V1_positionV4_positionV3_positionV2_recV4_positionV3_positionV3_senseV2_warn V4_positionV3_positionV2_position

V1_send V3_sendV3_positionV2_rec V1_position V4_recV2_position V3_sendV2_rec V2_positionV1_send V4_recV2_position V3_position V2_positionV1_position V4_warnV3_senseV2_recV3_sense V3_positionV2_warn V3_senseV2_position V1_sense V4_recV1_sense V2_positionV4_warnV1_sense V1_position V4_warnV1_sense V1_positionV2_positionV4_positionV1_send V4_recV4_positionV3_sendV2_rec V4_positionV1_positionV4_positionV2_position V4_recV2_rec V4_positionV2_positionV1_sendV4_positionV2_position V3_sendV4_positionV3_senseV2_warn V4_positionV1_senseV4_positionV3_positionV2_warn V4_positionV3_positionV3_sense

V3_sendV2_rec V1_send V4_recV3_positionV2_warn V1_position V4_warnV2_positionV2_rec V4_recV2_position V3_send V2_positionV1_send V4_warn V2_positionV1_positionV3_senseV2_warnV3_senseV3_position V1_sense V4_warnV1_sense V2_positionV1_senseV1_positionV4_positionV4_recV2_rec V4_positionV1_sendV4_positionV3_sendV2_warn V4_positionV2_positionV2_recV4_positionV2_position V4_recV4_positionV3_senseV4_positionV3_position

V2_rec V4_recV3_sendV2_warn V1_send V4_warnV3_position V1_positionV2_positionV4_rec V2_positionV2_rec V4_warn V2_positionV1_sendV3_sense V1_senseV4_positionV2_recV4_positionV4_recV2_warnV4_positionV3_send V4_positionV2_position

V4_recV2_warn V2_rec V4_warnV3_send V1_sendV2_positionV4_warn V2_positionV2_recV4_positionV2_warnV4_positionV4_rec

V2_warnV4_warnV4_rec V2_recV2_positionV4_position

V4_warnV2_warn

Fig. 9. Reachability graph of SoS instance with four vehicles in the SH verification tool



20 Andreas Fuchs, Roland Rieke

Obviously, the reachability graph in Fig. 9 that is generated from the complex
scenario cannot be evaluated directly. However the technique of abstraction can
help us to identify if a given maximum functionally depends on a given minimum.

Behaviour abstraction of an APA can be formalised by language homomor-
phisms, more precisely by alphabetic language homomorphisms h : Σ∗ → Σ′∗.
By these homomorphisms certain transitions are ignored and others are re-
named, which may have the effect, that different transitions are identified with
one another. A mapping h : Σ∗ → Σ′∗ is called a language homomorphism if
h(ε) = ε and h(yz) = h(y)h(z) for each y, z ∈ Σ∗. It is called alphabetic, if
h(Σ) ⊂ Σ′ ∪ {ε}.

In order to analyse dependencies for each pair of maximum and minimum
in the graph in Fig. 9, we can now define alphabetic language homomorphisms
that will map every action except the given pairs of maximum and minimum to
ε. The computed abstract representations then provide a visualisation focussing
on the two actions, helping us to see directly, if the given maximum can occur
independent of the given minimum or if it depends on the minimum’s prior
occurrence.

Example 7. The minimal automaton computed from the reachability graph un-
der the homomorphism that preserves V1 sense and V2 show is depicted in
Fig. 10. This graph indicates a functional dependence relation between the given
maximum and minimum.

start
(V 1 sense) (V 2 show)

Fig. 10. Minimal automaton with maximum and minimum

The homomorphism preserving V1 sense and V4 show will result in the graph
depicted in Fig. 11 that indicates the given maximum and minimum not to have
a functional dependence relation.

start

(V 4 show) (V 1 sense)

(V 1 sense) (V 4 show)

Fig. 11. Minimal automaton with independent maximum and minimum

Following this approach, testing each of the maxima with each of the min-
ima for functional dependence, the complex scenario has the following set of
requirements (with the stakeholder of V4 to be driver D4 of course):



Identification of Security Requirements by Functional Security Analysis 21

auth(V1 sense, V2 show , D2), auth(V1 pos, V2 show , D2),

auth(V2 pos, V2 show , D2), auth(V3 sense, V4 show , D4),

auth(V3 pos, V4 show , D4), auth(V4 pos, V4 show , D4).

6 Conclusion

The presented approach for deriving safety-critical authenticity requirements in
SoS solves several issues compared to existing approaches. It incorporates a clear
scheme that will ensure a consistent and complete set of security requirements.
Also it is based directly on the functional analysis, ensuring the safety of the
system at stake. The systematic approach that incorporates formal semantics
leads directly to the formal validation of security, as it is required by certain
evaluation assurance levels of Common Criteria (ISO/IEC 15408). Furthermore
the difficulties of designing SoS are specifically targeted.

Starting from this set of very high-level requirements, the security engineer-
ing process may proceed. This will include decisions regarding the mechanisms
to be included. Accordingly the requirements have to be refined to more concrete
requirements in this process. The design and refinement process may reveal fur-
ther requirements regarding the internals of the system that have to be addressed
as well.

Future work may include the derivation of confidentiality requirements in a
similar way as was presented here. Though this will require for different security
goals, as confidentiality is not related to safety in a similar way, but rather to
privacy. Non-Repudiation may also be a target that should be approached in co-
operation with lawyers in order to find the relevant security goals. Furthermore,
the refinement throughout the design process should be evaluated regarding
possibility of formalising it in schemes with respect to the security requirements
refinement process.

For the tool-assisted method in Sect. 5, traditional model checking tech-
niques allow a verification of SoS behaviour only for systems with very few
components. We are developing an abstraction based approach to extend our
current tool supported verification techniques to such families of systems that
are usually parameterised by a number of replicated identical components. In
[19] we demonstrated our technique by an exemplary verification of security and
liveness properties of a simple parameterised collaboration scenario. In [21] we
defined uniform parameterisations of phase based cooperations in terms of for-
mal language theory. For such systems of cooperations a kind of self-similarity
is formalised. Based on deterministic computations in shuffle automata a suffi-
cient condition for self-similarity is given. Under certain regularity restrictions
this condition can be verified by a semi-algorithm. For verification purposes, so
called uniformly parameterised safety properties are defined. Such properties can
be used to express privacy policies as well as security and dependability require-
ments. It is shown, how the parameterised problem of verifying such a property
is reduced by self-similarity to a finite state problem.



22 Andreas Fuchs, Roland Rieke

Acknowledgments. Andreas Fuchs developed the work presented here in the
context of the project EVITA (ID 224275) being co-funded by the European
Commission within the Seventh Framework Programme. Roland Rieke developed
the work presented here in the context of the projects Alliance Digital Product
Flow (ADiWa) (ID 01IA08006F) and VOGUE (ID 01IS09032A) which are both
funded by the German Federal Ministry of Education and Research.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput.
1(1), 11–33 (2004)

2. Bodeau, D.J.: System-of-Systems Security Engineering. In: In Proc. of the 10th
Annual Computer Security Applications Conference, Orlando, Florida. pp. 228–
235. IEEE Computer Society (1994)

3. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New
York (1974)

4. Firesmith, D.: Engineering security requirements. Journal of Object Technology
2(1), 53–68 (2003)

5. Fuchs, A., Rieke, R.: Identification of authenticity requirements in systems of
systems by functional security analysis. In: Workshop on Architecting Depend-
able Systems (WADS 2009), in Proceedings of the 2009 IEEE/IFIP Conference
on Dependable Systems and Networks, Supplementary Volume (2009), http:

//sit.sit.fraunhofer.de/smv/publications/
6. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements engineer-

ing meets trust management: Model, methodology, and reasoning. In: In Proc. of
iTrust 04, LNCS 2995. pp. 176–190. Springer-Verlag (2004)

7. Group, T.C.: TCG TPM Specification 1.2 revision 103. www.trustedcomputing.org
(2006)

8. Gürgens, S., Ochsenschläger, P., Rudolph, C.: Authenticity and provability - a
formal framework. In: Infrastructure Security Conference InfraSec 2002. Lecture
Notes in Computer Science, vol. 2437, pp. 227–245. Springer Verlag (2002)

9. Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B.: Security requirements engi-
neering: A framework for representation and analysis. IEEE Trans. Software Eng.
34(1), 133–153 (2008)

10. Hatebur, D., Heisel, M., Schmidt, H.: A security engineering process based on pat-
terns. In: Proceedings of the International Workshop on Secure Systems Method-
ologies using Patterns (SPatterns), DEXA 2007. pp. 734–738. IEEE Computer
Society (2007), http://www.ieee.org/

11. Hatebur, D., Heisel, M., Schmidt, H.: A pattern system for security requirements
engineering. In: Proceedings of the International Conference on Availability, Reli-
ability and Security (AReS). pp. 356–365. IEEE (2007), http://www.ieee.org/

12. Hatebur, D., Heisel, M., Schmidt, H.: Analysis and component-based realization
of security requirements. In: Proceedings of the International Conference on Avail-
ability, Reliability and Security (AReS). pp. 195–203. IEEE Computer Society
(2008), http://www.ieee.org/

13. van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional anti-models. In: ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering. pp. 148–157. IEEE Computer Society, Washington, DC,
USA (2004)



Identification of Security Requirements by Functional Security Analysis 23

14. Liu, L., Yu, E., Mylopoulos, J.: Analyzing security requirements as relationships
among strategic actors. In: 2nd Symposium on Requirements Engineering for In-
formation Security (SREIS’02) (2002)

15. Mead, N.R.: How To Compare the Security Quality Requirements Engineering
(SQUARE) Method with Other Methods . Tech. Rep. CMU/SEI-2007-TN-021,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2007)

16. Mead, N.R., Hough, E.D.: Security requirements engineering for software systems:
Case studies in support of software engineering education. In: CSEET ’06: Pro-
ceedings of the 19th Conference on Software Engineering Education & Training.
pp. 149–158. IEEE Computer Society, Washington, DC, USA (2006)

17. Mellado, D., Fernández-Medina, E., Piattini, M.: A common criteria based secu-
rity requirements engineering process for the development of secure information
systems. Comput. Stand. Interfaces 29(2), 244–253 (2007)

18. Ochsenschläger, P., Repp, J., Rieke, R.: Abstraction and composition – a verifi-
cation method for co-operating systems. Journal of Experimental and Theoretical
Artificial Intelligence 12, 447–459 (June 2000), http://sit.sit.fraunhofer.de/
smv/publications/, copyright: c©2000, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

19. Ochsenschläger, P., Rieke, R.: Abstraction based verification of a parameterised
policy controlled system. In: International Conference ”Mathematical Methods,
Models and Architectures for Computer Networks Security” (MMM-ACNS-7).
CCIS, vol. 1. Springer (September 2007), http://sit.sit.fraunhofer.de/smv/
publications/, Springer

20. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting, The International Journal of Formal Method 11, 1–24 (1999)

21. Ochsenschläger, P., Rieke, R.: Uniform parameterisation of phase based coop-
erations. Tech. Rep. SIT-TR-2010/1, Fraunhofer SIT (2010), http://sit.sit.

fraunhofer.de/smv/publications/
22. Papadimitratos, P., Buttyan, L., Hubaux, J.P., Kargl, F., Kung, A., Raya, M.:

Architecture for Secure and Private Vehicular Communications. In: IEEE Interna-
tional Conference on ITS Telecommunications (ITST). pp. 1–6. Sophia Antipolis,
France (June 2007)

23. Ruddle, A., Ward, D., Weyl, B., Idrees, S., Roudier, Y., Friedewald, M., Leimbach,
T., Fuchs, A., Grgens, S., Henniger, O., Rieke, R., Ritscher, M., Broberg, H.,
Apvrille, L., Pacalet, R., Pedroza, G.: Security requirements for automotive on-
board networks based on dark-side scenarios. EVITA Deliverable D2.3, EVITA
project (2009), http://evita-project.org/deliverables.html

24. Sadeghi, A.R., Stüble, C.: Property-based attestation for computing platforms:
caring about properties, not mechanisms. In: NSPW ’04: Proceedings of the 2004
workshop on New security paradigms. pp. 67–77. ACM, New York, NY, USA (2004)

25. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of
a TCG-based integrity measurement architecture. In: Proceedings of the 13th
USENIX Security Symposium. USENIX Association (2004)

26. Schaub, F., Ma, Z., Kargl, F.: Privacy requirements in vehicular communica-
tion systems. In: IEEE International Conference on Privacy, Security, Risk, and
Trust (PASSAT 2009), Symposium on Secure Computing (SecureCom09). Vancou-
ver, Canada (08/2009 2009), http://doi.ieeecomputersociety.org/10.1109/

CSE.2009.135
27. Shirey, R.: Internet Security Glossary, Version 2. RFC 4949 (Informational) (Aug

2007), http://www.ietf.org/rfc/rfc4949.txt


